什么是通用,有效的算法,用于在离散值矩阵中查找列的最小子集,使该行唯一。
例如,考虑这个矩阵(带有命名列):
a b c d 2 1 0 0 2 0 0 0 2 1 2 2 1 2 2 2 2 1 1 0
矩阵中的每一行都是唯一的。但是,如果我们删除列a
和d
,我们会保留相同的属性。
我可以枚举列的所有可能组合,但随着矩阵的增长,这些组合将很快变得难以处理。这样做有更快,更优的算法吗?
答案 0 :(得分:2)
实际上,我原来的配方并不是很好。这套装置更好。
import pulp
# Input data
A = [
[2, 1, 0, 0],
[2, 0, 0, 0],
[2, 1, 2, 2],
[1, 2, 2, 2],
[2, 1, 1, 0]
]
# Preprocess the data a bit.
# Bikj = 1 if Aij != Akj, 0 otherwise
B = []
for i in range(len(A)):
Bi = []
for k in range(len(A)):
Bik = [int(A[i][j] != A[k][j]) for j in range(len(A[i]))]
Bi.append(Bik)
B.append(Bi)
model = pulp.LpProblem('Tim', pulp.LpMinimize)
# Variables turn on and off columns.
x = [pulp.LpVariable('x_%d' % j, cat=pulp.LpBinary) for j in range(len(A[0]))]
# The sum of elementwise absolute difference per element and row.
for i in range(len(A)):
for k in range(i + 1, len(A)):
model += sum(B[i][k][j] * x[j] for j in range(len(A[i]))) >= 1
model.setObjective(pulp.lpSum(x))
assert model.solve() == pulp.LpStatusOptimal
print([xi.value() for xi in x])
答案 1 :(得分:1)
这是我贪心的解决方案。 (是的,这不符合您的“最佳”标准。)随机选择一条可以安全扔掉并扔掉的行。继续前进,直到不再有这样的行。我确信is_valid
可以优化。
rows = [
[2, 1, 0, 0],
[2, 0, 0, 0],
[2, 1, 2, 2],
[1, 2, 2, 2],
[2, 1, 1, 0]
]
col_names = [0, 1, 2, 3]
def is_valid(rows, col_names):
# it's valid if every row has a distinct "signature"
signatures = { tuple(row[col] for col in col_names) for row in rows }
return len(signatures) == len(rows)
import random
def minimal_distinct_columns(rows, col_names):
col_names = col_names[:]
random.shuffle(col_names)
for i, col in enumerate(col_names):
fewer_col_names = col_names[:i] + col_names[(i+1):]
if is_valid(rows, fewer_col_names):
return minimal_distinct_columns(rows, fewer_col_names)
return col_names
因为它很贪婪,所以总是没有得到最好的答案,但它应该相对快速(而且简单)。
答案 2 :(得分:1)
观察:如果M具有唯一的行而没有列i和j,则它具有唯一的行而没有列i且没有列j独立(换句话说,将列添加到矩阵中唯一行不能使行不唯一)。因此,您应该能够通过使用深度优先搜索找到最小(不仅仅是最小)解决方案。
def has_unique_rows(M):
return len(set([tuple(i) for i in M])) == len(M)
def remove_cols(M, cols):
ret = []
for row in M:
new_row = []
for i in range(len(row)):
if i in cols:
continue
new_row.append(row[i])
ret.append(new_row)
return ret
def minimum_unique_rows(M):
if not has_unique_rows(M):
raise ValueError("M must have unique rows")
cols = list(range(len(M[0])))
def _cols_to_remove(M, removed_cols=(), max_removed_cols=()):
for i in set(cols) - set(removed_cols):
new_removed_cols = removed_cols + (i,)
new_M = remove_cols(M, new_removed_cols)
if not has_unique_rows(new_M):
continue
if len(new_removed_cols) > len(max_removed_cols):
max_removed_cols = new_removed_cols
return _cols_to_remove(M, new_removed_cols, max_removed_cols)
return max_removed_cols
removed_cols = _cols_to_remove(M)
return remove_cols(M, removed_cols), removed_cols
(请注意我的变量命名很糟糕)
这是你的矩阵
In [172]: rows = [
.....: [2, 1, 0, 0],
.....: [2, 0, 0, 0],
.....: [2, 1, 2, 2],
.....: [1, 2, 2, 2],
.....: [2, 1, 1, 0]
.....: ]
In [173]: minimum_unique_rows(rows)
Out[173]: ([[1, 0], [0, 0], [1, 2], [2, 2], [1, 1]], (0, 3))
我生成了一个随机矩阵(使用sympy.randMatrix
),如下所示
⎡0 1 0 1 0 1 1⎤
⎢ ⎥
⎢0 1 1 2 0 0 2⎥
⎢ ⎥
⎢1 0 1 1 1 0 0⎥
⎢ ⎥
⎢1 2 2 1 1 2 2⎥
⎢ ⎥
⎢2 0 0 0 0 1 1⎥
⎢ ⎥
⎢2 0 2 2 1 1 0⎥
⎢ ⎥
⎢2 1 2 1 1 0 1⎥
⎢ ⎥
⎢2 2 1 2 1 0 1⎥
⎢ ⎥
⎣2 2 2 1 1 2 1⎦
(请注意,对M
行进行排序有助于手动检查这些内容)
In [224]: M1 = [[0, 1, 0, 1, 0, 1, 1], [0, 1, 1, 2, 0, 0, 2], [1, 0, 1, 1, 1, 0, 0], [1, 2, 2, 1, 1, 2, 2], [2, 0, 0, 0, 0, 1, 1], [2, 0, 2, 2, 1, 1, 0], [2, 1, 2, 1, 1, 0
, 1], [2, 2, 1, 2, 1, 0, 1], [2, 2, 2, 1, 1, 2, 1]]
In [225]: minimum_unique_rows(M1)
Out[225]: ([[1, 1, 1], [2, 0, 2], [1, 0, 0], [1, 2, 2], [0, 1, 1], [2, 1, 0], [1, 0, 1], [2, 0, 1], [1, 2, 1]], (0, 1, 2, 4))
这是一个强力检查,它是最低答案(实际上有很多最低要求)。
In [229]: from itertools import combinations
In [230]: print([has_unique_rows(remove_cols(M1, r)) for r in combinations(range(7), 6)])
[False, False, False, False, False, False, False]
In [231]: print([has_unique_rows(remove_cols(M1, r)) for r in combinations(range(7), 5)])
[False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False, False]
In [232]: print([has_unique_rows(remove_cols(M1, r)) for r in combinations(range(7), 4)])
[False, True, False, False, False, False, False, False, False, False, True, False, False, False, False, False, True, False, False, False, False, False, False, False, True, False, False, True, False, False, False, False, False, True, True]
答案 3 :(得分:0)
虽然我确定有更好的方法,但这让我想起了我在90年代所做的一些遗传算法。我使用R&#39 GA
包编写了一个快速版本。
library(GA)
matrix_to_minimize <- matrix(c(2,2,1,1,2,
1,0,1,2,1,
0,0,2,2,1,
0,0,2,2,0), ncol=4)
evaluate <- function(indices) {
if(all(indices == 0)) {
return(0)
}
selected_cols <- matrix_to_minimize[, as.logical(indices), drop=FALSE]
are_unique <- nrow(selected_cols) == nrow(unique(selected_cols))
if (are_unique == FALSE) {
return(0)
}
retval <- (1/sum(as.logical(indices)))
return(retval)
}
ga_results <- ga("binary", evaluate,
nBits=ncol(matrix_to_minimize),
popSize=10 * ncol(matrix_to_minimize), #why not
maxiter=1000,
run=10) #probably want to play with this
print("Best Solution: ")
print(ga_results@solution)
我不知道它是好的还是最佳的,但我敢打赌它会在合理的时间内提供一个相当好的答案? :)