这可能很容易。我有一个矩阵:
testM <- matrix(1:40, ncol = 4, byrow = FALSE)
testM
[,1] [,2] [,3] [,4]
[1,] 1 11 21 31
[2,] 2 12 22 32
[3,] 3 13 23 33
[4,] 4 14 24 34
[5,] 5 15 25 35
[6,] 6 16 26 36
[7,] 7 17 27 37
[8,] 8 18 28 38
[9,] 9 19 29 39
[10,] 10 20 30 40
我希望逐行“减少”矩阵求和列对。预期结果:
[,1] [,2]
[1,] 12 52
[2,] 14 54
[3,] 16 56
[4,] 18 58
[5,] 20 60
[6,] 22 62
[7,] 24 64
[8,] 26 66
[9,] 28 68
[10,] 30 70
我尝试了这个但是不起作用
X <- apply(1:(ncol(testM)/2), 1, function(x) sum(testM[x], testM[x+1]) )
Error in apply(1:(ncol(testM)/2), 1, function(x) sum(testM[x], testM[x + :
dim(X) must have a positive length
答案 0 :(得分:6)
testM[,c(T,F)]+testM[,c(F,T)];
## [,1] [,2]
## [1,] 12 52
## [2,] 14 54
## [3,] 16 56
## [4,] 18 58
## [5,] 20 60
## [6,] 22 62
## [7,] 24 64
## [8,] 26 66
## [9,] 28 68
## [10,] 30 70
答案 1 :(得分:3)
以下是使用rowSums()
sapply( list(1:2,3:4) , function(i) rowSums(testM[,i]) )
如果列数应该是任意的,那就更复杂了:
li <- split( 1:ncol(testM) , rep(1:(ncol(testM)/2), times=1 , each=2))
sapply( li , function(i) rowSums(testM[,i]) )
答案 2 :(得分:1)
我们可以进行矩阵乘法:
M <- matrix(c(1,1,0,0, 0,0,1,1), 4, 2)
testM %*% M
使用tapply()
的其他解决方案:
g <- gl(ncol(testM)/2, 2)
t(apply(testM, 1, FUN=tapply, INDEX=g, sum))
答案 3 :(得分:0)
怎么样:
matrix(c(testM[, 1] + testM[, 2], testM[, 2] + testM[, 4]), nrow = 10)
答案 4 :(得分:0)
围绕您最初想法的解决方案:
sapply(seq(2, ncol(testM), 2), function(x) apply(testM[, (x-1):x], 1, sum))