我最近设置了一个Multinode Hadoop HA(Namenode& ResourceManager)群集(3个节点),安装完成,所有守护进程按预期运行
NN1中的守护进程:
2945 JournalNode
3137 DFSZKFailoverController
6385 Jps
3338 NodeManager
22730 QuorumPeerMain
2747 DataNode
3228 ResourceManager
2636 NameNode
NN2中的守护进程:
19620 Jps
3894 QuorumPeerMain
16966 ResourceManager
16808 NodeManager
16475 DataNode
16572 JournalNode
17101 NameNode
16702 DFSZKFailoverController
DN1中的守护进程:
12228 QuorumPeerMain
29060 NodeManager
28858 DataNode
29644 Jps
28956 JournalNode
我有兴趣在我的Yarn设置上运行Spark Jobs。 我在我的NN1上安装了Scala和Spark,我可以通过发出以下命令
成功启动我的火花$ spark-shell
现在,我对SPARK一无所知,我想知道如何在纱线上运行Spark。我已经读过,我们可以将它作为纱线客户端或纱线集群运行。
我应该安装火花&群集中的所有节点(NN2和DN1)上的scala在Yarn客户端或群集上运行spark?如果否,那么我如何从NN1(主要名称节点)主机提交Spark作业。
我已经将Spark程序集JAR复制到HDFS,正如我在博客中所建议的那样
-rw-r--r-- 3 hduser supergroup 187548272 2016-04-04 15:56 /user/spark/share/lib/spark-assembly.jar
还在我的bashrc文件中创建了SPARK_JAR变量。我试图将Spark Job作为yarn-client提交但我最终得到如下错误,我不知道我是否正确地做了这一切或需要其他设置是先完成。
[hduser@ptfhadoop01v spark-1.6.0]$ ./bin/spark-submit --class org.apache.spark.examples.SparkPi --master yarn --deploy-mode client --driver-memory 4g --executor-memory 2g --executor-cores 2 --queue thequeue lib/spark-examples*.jar 10
16/04/04 17:27:50 WARN NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
16/04/04 17:27:51 WARN SparkConf:
SPARK_WORKER_INSTANCES was detected (set to '2').
This is deprecated in Spark 1.0+.
Please instead use:
- ./spark-submit with --num-executors to specify the number of executors
- Or set SPARK_EXECUTOR_INSTANCES
- spark.executor.instances to configure the number of instances in the spark config.
16/04/04 17:27:54 WARN Client: SPARK_JAR detected in the system environment. This variable has been deprecated in favor of the spark.yarn.jar configuration variable.
16/04/04 17:27:54 WARN Client: SPARK_JAR detected in the system environment. This variable has been deprecated in favor of the spark.yarn.jar configuration variable.
16/04/04 17:27:57 ERROR SparkContext: Error initializing SparkContext.
org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:124)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:64)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:144)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:530)
at org.apache.spark.examples.SparkPi$.main(SparkPi.scala:29)
at org.apache.spark.examples.SparkPi.main(SparkPi.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:731)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
16/04/04 17:27:58 WARN MetricsSystem: Stopping a MetricsSystem that is not running
Exception in thread "main" org.apache.spark.SparkException: Yarn application has already ended! It might have been killed or unable to launch application master.
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.waitForApplication(YarnClientSchedulerBackend.scala:124)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:64)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:144)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:530)
at org.apache.spark.examples.SparkPi$.main(SparkPi.scala:29)
at org.apache.spark.examples.SparkPi.main(SparkPi.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:497)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:731)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
[hduser@ptfhadoop01v spark-1.6.0]$
请帮我解决这个问题,以及如何在客户端或集群模式下运行Spark on Yarn。
答案 0 :(得分:2)
现在,我对SPARK一无所知,我想知道如何在纱线上运行Spark。我已经读过,我们可以将它作为纱线客户端或纱线集群运行。
强烈建议您在http://spark.apache.org/docs/latest/running-on-yarn.html阅读有关Spark on YARN的官方文档。
您可以使用spark-shell
与--master yarn
连接到YARN。您需要在spark-shell
来自的计算机上拥有正确的配置文件,例如: yarn-site.xml
。
我应该安装火花&amp;群集中的所有节点(NN2和DN1)上的scala在Yarn客户端或群集上运行spark?
没有。您不必在YARN上安装任何东西,因为Spark会为您分发必要的文件。
如果否,那么我如何从NN1(主要名称节点)主机提交Spark作业。
从spark-shell --master yarn
开始,看看您是否可以执行以下代码:
(0 to 5).toDF.show
如果你看到类似表格的输出,那么你已经完成了。否则,提供错误。
还在我的bashrc文件中创建了SPARK_JAR变量。我试图将Spark Job作为yarn-client提交但我最终得到如下错误,我不知道我是否正确地做了这一切或需要其他设置是先完成。
删除SPARK_JAR
变量。不要使用它,因为它不需要,可能会导致麻烦。阅读http://spark.apache.org/docs/latest/running-on-yarn.html上的官方文档,了解Spark在YARN及以后的基础知识。
答案 1 :(得分:0)
通过将此属性添加到hdfs-site.xml,它解决了问题
<property>
<name>dfs.client.failover.proxy.provider.mycluster</name>
<value>org.apache.hadoop.hdfs.server.namenode.ha.ConfiguredFailoverProxyProvider</value>
</property>
答案 2 :(得分:-1)
在客户端模式下,您可以运行类似下面的简单字数示例
spark-submit --class org.sparkexample.WordCount --master yarn-client wordcount-sample-plain-1.0-SNAPSHOT.jar input.txt output.txt
我认为你在那里错误地提出了spark-submit命令。没有 - 主纱设置。 我强烈建议使用自动配置工具快速设置群集,而不是手动方法。
请参阅Cloudera或Hortonworks工具。您可以立即使用它进行设置,并且无需手动完成所有这些配置即可轻松提交作业。