大集的权力集

时间:2016-04-04 09:30:38

标签: c++ algorithm set powerset

我必须计算集合的幂集,其中可能包含更多元素10^5。我尝试了一个算法和下面的代码,但它失败了(我认为导致pow(2, size)的大值。)

void printPowerSet(int *set, int set_size)
{
unsigned int pow_set_size = pow(2, set_size);
int counter, j,sum=0;
 for(counter = 0; counter < pow_set_size; counter++)
{
  for(j = 0; j < set_size; j++)
   {
      if(counter & (1<<j))
     std::cout<<set[i]<<" ";
   }
   std::cout<<sum;
   sum=0;
   printf("\n");
}
}

是否还有其他算法或如何修复此算法(如果可能的话)?

Can you suggest me how to do it i.e. finding subset of large set.

  
    

正如答案所指出的,我似乎陷入了困境      X-Y problem。基本上,我需要任何集合的所有子集的总和。现在,如果你能建议我解决问题的任何其他方法。     
    谢谢。

  

3 个答案:

答案 0 :(得分:1)

这是一种算法,可以打印出任何适合计算机内存的电源组。

如果有足够的时间,它将打印一组长度为10 ^ 5的幂集。

然而,“足够的时间”将达到几万亿亿亿年。

C ++ 14

#include <iostream>
#include <vector>
#include <algorithm>

using namespace std;

#include <iostream>

void printPowerset (const vector<int>& original_set)
{
    auto print_set = [&original_set](auto first, auto last) -> ostream&
    {
        cout << '(';
        auto sep = "";
        for ( ; first != last  ; ++first, sep = ",")
        {
            cout << sep << original_set[(*first) - 1];
        }
        return cout << ')';
    };

    const int n = original_set.size();
    std::vector<int> index_stack(n + 1, 0);
    int k = 0;


    while(1){
        if (index_stack[k]<n){
            index_stack[k+1] = index_stack[k] + 1;
            k++;
        }

        else{
            index_stack[k-1]++;
            k--;
        }

        if (k==0)
            break;

        print_set(begin(index_stack) + 1, begin(index_stack) + 1 + k);
    }
    print_set(begin(index_stack), begin(index_stack)) << endl;
}

int main(){

    auto nums = vector<int> { 2, 4, 6, 8 };
    printPowerset(nums);

    nums = vector<int> { 2, 4, 6, 8, 10, 12, 14, 16, 18, 20 };
    printPowerset(nums);

    return 0;
}

预期结果:

第一组电源(4项):

(2)(2,4)(2,4,6)(2,4,6,8)(2,4,8)(2,6)(2,6,8)(2,8)(4)(4,6)(4,6,8)(4,8)(6)(6,8)(8)()

第二组电源(10项)

(2)(2,4)(2,4,6)(2,4,6,8)(2,4,6,8,10)(2,4,6,8,10,12)(2,4,6,8,10,12,14)(2,4,6,8,10,12,14,16)(2,4,6,8,10,12,14,16,18)(2,4,6,8,10,12,14,16,18,20)(2,4,6,8,10,12,14,16,20)(2,4,6,8,10,12,14,18)(2,4,6,8,10,12,14,18,20)(2,4,6,8,10,12,14,20)(2,4,6,8,10,12,16)(2,4,6,8,10,12,16,18)(2,4,6,8,10,12,16,18,20)(2,4,6,8,10,12,16,20)(2,4,6,8,10,12,18)(2,4,6,8,10,12,18,20)(2,4,6,8,10,12,20)(2,4,6,8,10,14)(2,4,6,8,10,14,16)(2,4,6,8,10,14,16,18)(2,4,6,8,10,14,16,18,20)(2,4,6,8,10,14,16,20)(2,4,6,8,10,14,18)(2,4,6,8,10,14,18,20)(2,4,6,8,10,14,20)(2,4,6,8,10,16)(2,4,6,8,10,16,18)(2,4,6,8,10,16,18,20)(2,4,6,8,10,16,20)(2,4,6,8,10,18)(2,4,6,8,10,18,20)(2,4,6,8,10,20)(2,4,6,8,12)(2,4,6,8,12,14)(2,4,6,8,12,14,16)(2,4,6,8,12,14,16,18)(2,4,6,8,12,14,16,18,20)(2,4,6,8,12,14,16,20)(2,4,6,8,12,14,18)(2,4,6,8,12,14,18,20)(2,4,6,8,12,14,20)(2,4,6,8,12,16)(2,4,6,8,12,16,18)(2,4,6,8,12,16,18,20)(2,4,6,8,12,16,20)(2,4,6,8,12,18)(2,4,6,8,12,18,20)(2,4,6,8,12,20)(2,4,6,8,14)(2,4,6,8,14,16)(2,4,6,8,14,16,18)(2,4,6,8,14,16,18,20)(2,4,6,8,14,16,20)(2,4,6,8,14,18)(2,4,6,8,14,18,20)(2,4,6,8,14,20)(2,4,6,8,16)(2,4,6,8,16,18)(2,4,6,8,16,18,20)(2,4,6,8,16,20)(2,4,6,8,18)(2,4,6,8,18,20)(2,4,6,8,20)(2,4,6,10)(2,4,6,10,12)(2,4,6,10,12,14)(2,4,6,10,12,14,16)(2,4,6,10,12,14,16,18)(2,4,6,10,12,14,16,18,20)(2,4,6,10,12,14,16,20)(2,4,6,10,12,14,18)(2,4,6,10,12,14,18,20)(2,4,6,10,12,14,20)(2,4,6,10,12,16)(2,4,6,10,12,16,18)(2,4,6,10,12,16,18,20)(2,4,6,10,12,16,20)(2,4,6,10,12,18)(2,4,6,10,12,18,20)(2,4,6,10,12,20)(2,4,6,10,14)(2,4,6,10,14,16)(2,4,6,10,14,16,18)(2,4,6,10,14,16,18,20)(2,4,6,10,14,16,20)(2,4,6,10,14,18)(2,4,6,10,14,18,20)(2,4,6,10,14,20)(2,4,6,10,16)(2,4,6,10,16,18)(2,4,6,10,16,18,20)(2,4,6,10,16,20)(2,4,6,10,18)(2,4,6,10,18,20)(2,4,6,10,20)(2,4,6,12)(2,4,6,12,14)(2,4,6,12,14,16)(2,4,6,12,14,16,18)(2,4,6,12,14,16,18,20)(2,4,6,12,14,16,20)(2,4,6,12,14,18)(2,4,6,12,14,18,20)(2,4,6,12,14,20)(2,4,6,12,16)(2,4,6,12,16,18)(2,4,6,12,16,18,20)(2,4,6,12,16,20)(2,4,6,12,18)(2,4,6,12,18,20)(2,4,6,12,20)(2,4,6,14)(2,4,6,14,16)(2,4,6,14,16,18)(2,4,6,14,16,18,20)(2,4,6,14,16,20)(2,4,6,14,18)(2,4,6,14,18,20)(2,4,6,14,20)(2,4,6,16)(2,4,6,16,18)(2,4,6,16,18,20)(2,4,6,16,20)(2,4,6,18)(2,4,6,18,20)(2,4,6,20)(2,4,8)(2,4,8,10)(2,4,8,10,12)(2,4,8,10,12,14)(2,4,8,10,12,14,16)(2,4,8,10,12,14,16,18)(2,4,8,10,12,14,16,18,20)(2,4,8,10,12,14,16,20)(2,4,8,10,12,14,18)(2,4,8,10,12,14,18,20)(2,4,8,10,12,14,20)(2,4,8,10,12,16)(2,4,8,10,12,16,18)(2,4,8,10,12,16,18,20)(2,4,8,10,12,16,20)(2,4,8,10,12,18)(2,4,8,10,12,18,20)(2,4,8,10,12,20)(2,4,8,10,14)(2,4,8,10,14,16)(2,4,8,10,14,16,18)(2,4,8,10,14,16,18,20)(2,4,8,10,14,16,20)(2,4,8,10,14,18)(2,4,8,10,14,18,20)(2,4,8,10,14,20)(2,4,8,10,16)(2,4,8,10,16,18)(2,4,8,10,16,18,20)(2,4,8,10,16,20)(2,4,8,10,18)(2,4,8,10,18,20)(2,4,8,10,20)(2,4,8,12)(2,4,8,12,14)(2,4,8,12,14,16)(2,4,8,12,14,16,18)(2,4,8,12,14,16,18,20)(2,4,8,12,14,16,20)(2,4,8,12,14,18)(2,4,8,12,14,18,20)(2,4,8,12,14,20)(2,4,8,12,16)(2,4,8,12,16,18)(2,4,8,12,16,18,20)(2,4,8,12,16,20)(2,4,8,12,18)(2,4,8,12,18,20)(2,4,8,12,20)(2,4,8,14)(2,4,8,14,16)(2,4,8,14,16,18)(2,4,8,14,16,18,20)(2,4,8,14,16,20)(2,4,8,14,18)(2,4,8,14,18,20)(2,4,8,14,20)(2,4,8,16)(2,4,8,16,18)(2,4,8,16,18,20)(2,4,8,16,20)(2,4,8,18)(2,4,8,18,20)(2,4,8,20)(2,4,10)(2,4,10,12)(2,4,10,12,14)(2,4,10,12,14,16)(2,4,10,12,14,16,18)(2,4,10,12,14,16,18,20)(2,4,10,12,14,16,20)(2,4,10,12,14,18)(2,4,10,12,14,18,20)(2,4,10,12,14,20)(2,4,10,12,16)(2,4,10,12,16,18)(2,4,10,12,16,18,20)(2,4,10,12,16,20)(2,4,10,12,18)(2,4,10,12,18,20)(2,4,10,12,20)(2,4,10,14)(2,4,10,14,16)(2,4,10,14,16,18)(2,4,10,14,16,18,20)(2,4,10,14,16,20)(2,4,10,14,18)(2,4,10,14,18,20)(2,4,10,14,20)(2,4,10,16)(2,4,10,16,18)(2,4,10,16,18,20)(2,4,10,16,20)(2,4,10,18)(2,4,10,18,20)(2,4,10,20)(2,4,12)(2,4,12,14)(2,4,12,14,16)(2,4,12,14,16,18)(2,4,12,14,16,18,20)(2,4,12,14,16,20)(2,4,12,14,18)(2,4,12,14,18,20)(2,4,12,14,20)(2,4,12,16)(2,4,12,16,18)(2,4,12,16,18,20)(2,4,12,16,20)(2,4,12,18)(2,4,12,18,20)(2,4,12,20)(2,4,14)(2,4,14,16)(2,4,14,16,18)(2,4,14,16,18,20)(2,4,14,16,20)(2,4,14,18)(2,4,14,18,20)(2,4,14,20)(2,4,16)(2,4,16,18)(2,4,16,18,20)(2,4,16,20)(2,4,18)(2,4,18,20)(2,4,20)(2,6)(2,6,8)(2,6,8,10)(2,6,8,10,12)(2,6,8,10,12,14)(2,6,8,10,12,14,16)(2,6,8,10,12,14,16,18)(2,6,8,10,12,14,16,18,20)(2,6,8,10,12,14,16,20)(2,6,8,10,12,14,18)(2,6,8,10,12,14,18,20)(2,6,8,10,12,14,20)(2,6,8,10,12,16)(2,6,8,10,12,16,18)(2,6,8,10,12,16,18,20)(2,6,8,10,12,16,20)(2,6,8,10,12,18)(2,6,8,10,12,18,20)(2,6,8,10,12,20)(2,6,8,10,14)(2,6,8,10,14,16)(2,6,8,10,14,16,18)(2,6,8,10,14,16,18,20)(2,6,8,10,14,16,20)(2,6,8,10,14,18)(2,6,8,10,14,18,20)(2,6,8,10,14,20)(2,6,8,10,16)(2,6,8,10,16,18)(2,6,8,10,16,18,20)(2,6,8,10,16,20)(2,6,8,10,18)(2,6,8,10,18,20)(2,6,8,10,20)(2,6,8,12)(2,6,8,12,14)(2,6,8,12,14,16)(2,6,8,12,14,16,18)(2,6,8,12,14,16,18,20)(2,6,8,12,14,16,20)(2,6,8,12,14,18)(2,6,8,12,14,18,20)(2,6,8,12,14,20)(2,6,8,12,16)(2,6,8,12,16,18)(2,6,8,12,16,18,20)(2,6,8,12,16,20)(2,6,8,12,18)(2,6,8,12,18,20)(2,6,8,12,20)(2,6,8,14)(2,6,8,14,16)(2,6,8,14,16,18)(2,6,8,14,16,18,20)(2,6,8,14,16,20)(2,6,8,14,18)(2,6,8,14,18,20)(2,6,8,14,20)(2,6,8,16)(2,6,8,16,18)(2,6,8,16,18,20)(2,6,8,16,20)(2,6,8,18)(2,6,8,18,20)(2,6,8,20)(2,6,10)(2,6,10,12)(2,6,10,12,14)(2,6,10,12,14,16)(2,6,10,12,14,16,18)(2,6,10,12,14,16,18,20)(2,6,10,12,14,16,20)(2,6,10,12,14,18)(2,6,10,12,14,18,20)(2,6,10,12,14,20)(2,6,10,12,16)(2,6,10,12,16,18)(2,6,10,12,16,18,20)(2,6,10,12,16,20)(2,6,10,12,18)(2,6,10,12,18,20)(2,6,10,12,20)(2,6,10,14)(2,6,10,14,16)(2,6,10,14,16,18)(2,6,10,14,16,18,20)(2,6,10,14,16,20)(2,6,10,14,18)(2,6,10,14,18,20)(2,6,10,14,20)(2,6,10,16)(2,6,10,16,18)(2,6,10,16,18,20)(2,6,10,16,20)(2,6,10,18)(2,6,10,18,20)(2,6,10,20)(2,6,12)(2,6,12,14)(2,6,12,14,16)(2,6,12,14,16,18)(2,6,12,14,16,18,20)(2,6,12,14,16,20)(2,6,12,14,18)(2,6,12,14,18,20)(2,6,12,14,20)(2,6,12,16)(2,6,12,16,18)(2,6,12,16,18,20)(2,6,12,16,20)(2,6,12,18)(2,6,12,18,20)(2,6,12,20)(2,6,14)(2,6,14,16)(2,6,14,16,18)(2,6,14,16,18,20)(2,6,14,16,20)(2,6,14,18)(2,6,14,18,20)(2,6,14,20)(2,6,16)(2,6,16,18)(2,6,16,18,20)(2,6,16,20)(2,6,18)(2,6,18,20)(2,6,20)(2,8)(2,8,10)(2,8,10,12)(2,8,10,12,14)(2,8,10,12,14,16)(2,8,10,12,14,16,18)(2,8,10,12,14,16,18,20)(2,8,10,12,14,16,20)(2,8,10,12,14,18)(2,8,10,12,14,18,20)(2,8,10,12,14,20)(2,8,10,12,16)(2,8,10,12,16,18)(2,8,10,12,16,18,20)(2,8,10,12,16,20)(2,8,10,12,18)(2,8,10,12,18,20)(2,8,10,12,20)(2,8,10,14)(2,8,10,14,16)(2,8,10,14,16,18)(2,8,10,14,16,18,20)(2,8,10,14,16,20)(2,8,10,14,18)(2,8,10,14,18,20)(2,8,10,14,20)(2,8,10,16)(2,8,10,16,18)(2,8,10,16,18,20)(2,8,10,16,20)(2,8,10,18)(2,8,10,18,20)(2,8,10,20)(2,8,12)(2,8,12,14)(2,8,12,14,16)(2,8,12,14,16,18)(2,8,12,14,16,18,20)(2,8,12,14,16,20)(2,8,12,14,18)(2,8,12,14,18,20)(2,8,12,14,20)(2,8,12,16)(2,8,12,16,18)(2,8,12,16,18,20)(2,8,12,16,20)(2,8,12,18)(2,8,12,18,20)(2,8,12,20)(2,8,14)(2,8,14,16)(2,8,14,16,18)(2,8,14,16,18,20)(2,8,14,16,20)(2,8,14,18)(2,8,14,18,20)(2,8,14,20)(2,8,16)(2,8,16,18)(2,8,16,18,20)(2,8,16,20)(2,8,18)(2,8,18,20)(2,8,20)(2,10)(2,10,12)(2,10,12,14)(2,10,12,14,16)(2,10,12,14,16,18)(2,10,12,14,16,18,20)(2,10,12,14,16,20)(2,10,12,14,18)(2,10,12,14,18,20)(2,10,12,14,20)(2,10,12,16)(2,10,12,16,18)(2,10,12,16,18,20)(2,10,12,16,20)(2,10,12,18)(2,10,12,18,20)(2,10,12,20)(2,10,14)(2,10,14,16)(2,10,14,16,18)(2,10,14,16,18,20)(2,10,14,16,20)(2,10,14,18)(2,10,14,18,20)(2,10,14,20)(2,10,16)(2,10,16,18)(2,10,16,18,20)(2,10,16,20)(2,10,18)(2,10,18,20)(2,10,20)(2,12)(2,12,14)(2,12,14,16)(2,12,14,16,18)(2,12,14,16,18,20)(2,12,14,16,20)(2,12,14,18)(2,12,14,18,20)(2,12,14,20)(2,12,16)(2,12,16,18)(2,12,16,18,20)(2,12,16,20)(2,12,18)(2,12,18,20)(2,12,20)(2,14)(2,14,16)(2,14,16,18)(2,14,16,18,20)(2,14,16,20)(2,14,18)(2,14,18,20)(2,14,20)(2,16)(2,16,18)(2,16,18,20)(2,16,20)(2,18)(2,18,20)(2,20)(4)(4,6)(4,6,8)(4,6,8,10)(4,6,8,10,12)(4,6,8,10,12,14)(4,6,8,10,12,14,16)(4,6,8,10,12,14,16,18)(4,6,8,10,12,14,16,18,20)(4,6,8,10,12,14,16,20)(4,6,8,10,12,14,18)(4,6,8,10,12,14,18,20)(4,6,8,10,12,14,20)(4,6,8,10,12,16)(4,6,8,10,12,16,18)(4,6,8,10,12,16,18,20)(4,6,8,10,12,16,20)(4,6,8,10,12,18)(4,6,8,10,12,18,20)(4,6,8,10,12,20)(4,6,8,10,14)(4,6,8,10,14,16)(4,6,8,10,14,16,18)(4,6,8,10,14,16,18,20)(4,6,8,10,14,16,20)(4,6,8,10,14,18)(4,6,8,10,14,18,20)(4,6,8,10,14,20)(4,6,8,10,16)(4,6,8,10,16,18)(4,6,8,10,16,18,20)(4,6,8,10,16,20)(4,6,8,10,18)(4,6,8,10,18,20)(4,6,8,10,20)(4,6,8,12)(4,6,8,12,14)(4,6,8,12,14,16)(4,6,8,12,14,16,18)(4,6,8,12,14,16,18,20)(4,6,8,12,14,16,20)(4,6,8,12,14,18)(4,6,8,12,14,18,20)(4,6,8,12,14,20)(4,6,8,12,16)(4,6,8,12,16,18)(4,6,8,12,16,18,20)(4,6,8,12,16,20)(4,6,8,12,18)(4,6,8,12,18,20)(4,6,8,12,20)(4,6,8,14)(4,6,8,14,16)(4,6,8,14,16,18)(4,6,8,14,16,18,20)(4,6,8,14,16,20)(4,6,8,14,18)(4,6,8,14,18,20)(4,6,8,14,20)(4,6,8,16)(4,6,8,16,18)(4,6,8,16,18,20)(4,6,8,16,20)(4,6,8,18)(4,6,8,18,20)(4,6,8,20)(4,6,10)(4,6,10,12)(4,6,10,12,14)(4,6,10,12,14,16)(4,6,10,12,14,16,18)(4,6,10,12,14,16,18,20)(4,6,10,12,14,16,20)(4,6,10,12,14,18)(4,6,10,12,14,18,20)(4,6,10,12,14,20)(4,6,10,12,16)(4,6,10,12,16,18)(4,6,10,12,16,18,20)(4,6,10,12,16,20)(4,6,10,12,18)(4,6,10,12,18,20)(4,6,10,12,20)(4,6,10,14)(4,6,10,14,16)(4,6,10,14,16,18)(4,6,10,14,16,18,20)(4,6,10,14,16,20)(4,6,10,14,18)(4,6,10,14,18,20)(4,6,10,14,20)(4,6,10,16)(4,6,10,16,18)(4,6,10,16,18,20)(4,6,10,16,20)(4,6,10,18)(4,6,10,18,20)(4,6,10,20)(4,6,12)(4,6,12,14)(4,6,12,14,16)(4,6,12,14,16,18)(4,6,12,14,16,18,20)(4,6,12,14,16,20)(4,6,12,14,18)(4,6,12,14,18,20)(4,6,12,14,20)(4,6,12,16)(4,6,12,16,18)(4,6,12,16,18,20)(4,6,12,16,20)(4,6,12,18)(4,6,12,18,20)(4,6,12,20)(4,6,14)(4,6,14,16)(4,6,14,16,18)(4,6,14,16,18,20)(4,6,14,16,20)(4,6,14,18)(4,6,14,18,20)(4,6,14,20)(4,6,16)(4,6,16,18)(4,6,16,18,20)(4,6,16,20)(4,6,18)(4,6,18,20)(4,6,20)(4,8)(4,8,10)(4,8,10,12)(4,8,10,12,14)(4,8,10,12,14,16)(4,8,10,12,14,16,18)(4,8,10,12,14,16,18,20)(4,8,10,12,14,16,20)(4,8,10,12,14,18)(4,8,10,12,14,18,20)(4,8,10,12,14,20)(4,8,10,12,16)(4,8,10,12,16,18)(4,8,10,12,16,18,20)(4,8,10,12,16,20)(4,8,10,12,18)(4,8,10,12,18,20)(4,8,10,12,20)(4,8,10,14)(4,8,10,14,16)(4,8,10,14,16,18)(4,8,10,14,16,18,20)(4,8,10,14,16,20)(4,8,10,14,18)(4,8,10,14,18,20)(4,8,10,14,20)(4,8,10,16)(4,8,10,16,18)(4,8,10,16,18,20)(4,8,10,16,20)(4,8,10,18)(4,8,10,18,20)(4,8,10,20)(4,8,12)(4,8,12,14)(4,8,12,14,16)(4,8,12,14,16,18)(4,8,12,14,16,18,20)(4,8,12,14,16,20)(4,8,12,14,18)(4,8,12,14,18,20)(4,8,12,14,20)(4,8,12,16)(4,8,12,16,18)(4,8,12,16,18,20)(4,8,12,16,20)(4,8,12,18)(4,8,12,18,20)(4,8,12,20)(4,8,14)(4,8,14,16)(4,8,14,16,18)(4,8,14,16,18,20)(4,8,14,16,20)(4,8,14,18)(4,8,14,18,20)(4,8,14,20)(4,8,16)(4,8,16,18)(4,8,16,18,20)(4,8,16,20)(4,8,18)(4,8,18,20)(4,8,20)(4,10)(4,10,12)(4,10,12,14)(4,10,12,14,16)(4,10,12,14,16,18)(4,10,12,14,16,18,20)(4,10,12,14,16,20)(4,10,12,14,18)(4,10,12,14,18,20)(4,10,12,14,20)(4,10,12,16)(4,10,12,16,18)(4,10,12,16,18,20)(4,10,12,16,20)(4,10,12,18)(4,10,12,18,20)(4,10,12,20)(4,10,14)(4,10,14,16)(4,10,14,16,18)(4,10,14,16,18,20)(4,10,14,16,20)(4,10,14,18)(4,10,14,18,20)(4,10,14,20)(4,10,16)(4,10,16,18)(4,10,16,18,20)(4,10,16,20)(4,10,18)(4,10,18,20)(4,10,20)(4,12)(4,12,14)(4,12,14,16)(4,12,14,16,18)(4,12,14,16,18,20)(4,12,14,16,20)(4,12,14,18)(4,12,14,18,20)(4,12,14,20)(4,12,16)(4,12,16,18)(4,12,16,18,20)(4,12,16,20)(4,12,18)(4,12,18,20)(4,12,20)(4,14)(4,14,16)(4,14,16,18)(4,14,16,18,20)(4,14,16,20)(4,14,18)(4,14,18,20)(4,14,20)(4,16)(4,16,18)(4,16,18,20)(4,16,20)(4,18)(4,18,20)(4,20)(6)(6,8)(6,8,10)(6,8,10,12)(6,8,10,12,14)(6,8,10,12,14,16)(6,8,10,12,14,16,18)(6,8,10,12,14,16,18,20)(6,8,10,12,14,16,20)(6,8,10,12,14,18)(6,8,10,12,14,18,20)(6,8,10,12,14,20)(6,8,10,12,16)(6,8,10,12,16,18)(6,8,10,12,16,18,20)(6,8,10,12,16,20)(6,8,10,12,18)(6,8,10,12,18,20)(6,8,10,12,20)(6,8,10,14)(6,8,10,14,16)(6,8,10,14,16,18)(6,8,10,14,16,18,20)(6,8,10,14,16,20)(6,8,10,14,18)(6,8,10,14,18,20)(6,8,10,14,20)(6,8,10,16)(6,8,10,16,18)(6,8,10,16,18,20)(6,8,10,16,20)(6,8,10,18)(6,8,10,18,20)(6,8,10,20)(6,8,12)(6,8,12,14)(6,8,12,14,16)(6,8,12,14,16,18)(6,8,12,14,16,18,20)(6,8,12,14,16,20)(6,8,12,14,18)(6,8,12,14,18,20)(6,8,12,14,20)(6,8,12,16)(6,8,12,16,18)(6,8,12,16,18,20)(6,8,12,16,20)(6,8,12,18)(6,8,12,18,20)(6,8,12,20)(6,8,14)(6,8,14,16)(6,8,14,16,18)(6,8,14,16,18,20)(6,8,14,16,20)(6,8,14,18)(6,8,14,18,20)(6,8,14,20)(6,8,16)(6,8,16,18)(6,8,16,18,20)(6,8,16,20)(6,8,18)(6,8,18,20)(6,8,20)(6,10)(6,10,12)(6,10,12,14)(6,10,12,14,16)(6,10,12,14,16,18)(6,10,12,14,16,18,20)(6,10,12,14,16,20)(6,10,12,14,18)(6,10,12,14,18,20)(6,10,12,14,20)(6,10,12,16)(6,10,12,16,18)(6,10,12,16,18,20)(6,10,12,16,20)(6,10,12,18)(6,10,12,18,20)(6,10,12,20)(6,10,14)(6,10,14,16)(6,10,14,16,18)(6,10,14,16,18,20)(6,10,14,16,20)(6,10,14,18)(6,10,14,18,20)(6,10,14,20)(6,10,16)(6,10,16,18)(6,10,16,18,20)(6,10,16,20)(6,10,18)(6,10,18,20)(6,10,20)(6,12)(6,12,14)(6,12,14,16)(6,12,14,16,18)(6,12,14,16,18,20)(6,12,14,16,20)(6,12,14,18)(6,12,14,18,20)(6,12,14,20)(6,12,16)(6,12,16,18)(6,12,16,18,20)(6,12,16,20)(6,12,18)(6,12,18,20)(6,12,20)(6,14)(6,14,16)(6,14,16,18)(6,14,16,18,20)(6,14,16,20)(6,14,18)(6,14,18,20)(6,14,20)(6,16)(6,16,18)(6,16,18,20)(6,16,20)(6,18)(6,18,20)(6,20)(8)(8,10)(8,10,12)(8,10,12,14)(8,10,12,14,16)(8,10,12,14,16,18)(8,10,12,14,16,18,20)(8,10,12,14,16,20)(8,10,12,14,18)(8,10,12,14,18,20)(8,10,12,14,20)(8,10,12,16)(8,10,12,16,18)(8,10,12,16,18,20)(8,10,12,16,20)(8,10,12,18)(8,10,12,18,20)(8,10,12,20)(8,10,14)(8,10,14,16)(8,10,14,16,18)(8,10,14,16,18,20)(8,10,14,16,20)(8,10,14,18)(8,10,14,18,20)(8,10,14,20)(8,10,16)(8,10,16,18)(8,10,16,18,20)(8,10,16,20)(8,10,18)(8,10,18,20)(8,10,20)(8,12)(8,12,14)(8,12,14,16)(8,12,14,16,18)(8,12,14,16,18,20)(8,12,14,16,20)(8,12,14,18)(8,12,14,18,20)(8,12,14,20)(8,12,16)(8,12,16,18)(8,12,16,18,20)(8,12,16,20)(8,12,18)(8,12,18,20)(8,12,20)(8,14)(8,14,16)(8,14,16,18)(8,14,16,18,20)(8,14,16,20)(8,14,18)(8,14,18,20)(8,14,20)(8,16)(8,16,18)(8,16,18,20)(8,16,20)(8,18)(8,18,20)(8,20)(10)(10,12)(10,12,14)(10,12,14,16)(10,12,14,16,18)(10,12,14,16,18,20)(10,12,14,16,20)(10,12,14,18)(10,12,14,18,20)(10,12,14,20)(10,12,16)(10,12,16,18)(10,12,16,18,20)(10,12,16,20)(10,12,18)(10,12,18,20)(10,12,20)(10,14)(10,14,16)(10,14,16,18)(10,14,16,18,20)(10,14,16,20)(10,14,18)(10,14,18,20)(10,14,20)(10,16)(10,16,18)(10,16,18,20)(10,16,20)(10,18)(10,18,20)(10,20)(12)(12,14)(12,14,16)(12,14,16,18)(12,14,16,18,20)(12,14,16,20)(12,14,18)(12,14,18,20)(12,14,20)(12,16)(12,16,18)(12,16,18,20)(12,16,20)(12,18)(12,18,20)(12,20)(14)(14,16)(14,16,18)(14,16,18,20)(14,16,20)(14,18)(14,18,20)(14,20)(16)(16,18)(16,18,20)(16,20)(18)(18,20)(20)()

答案 1 :(得分:0)

这是不可能的,因为你指出自己的权力集包含pow(2, size)没有元素。您需要打印整个集合,只能通过使用backtracking生成集合来完成,没有更好的。

要找到给定集合的所有子集的总和,这是一个更简单的问题。

如果元素的数量为n,则数组中的每个元素在幂集中出现2^(n-1)次。

伪代码:

int sum = 0;

for(int i = 0;i < n;i++){
    sum += ( set[i] * ( 1 << (n-1) ) );    //pow(2, n-1) == 1 << (n-1)
}

cout << sum << endl;

对于Big Integer Library的较大值,您需要n

答案 2 :(得分:0)

由于集合中的元素数量可以达到10^5,因此集合的大小将达到2^(10^5),这是巨大的。您可以只打印它,或者如果要存储它,请将其存储在文件中。