是否有任何API在Amazon Web Services上具有最新定价?可以查询的东西,例如,给定区域的最新价格S3,或EC2等。
谢谢
答案 0 :(得分:38)
<强>更新强>
AWS现在有定价API:https://aws.amazon.com/blogs/aws/new-aws-price-list-api/
原始回答:
这是我之前要求的(通过AWS传播者和调查),但尚未提及。我想AWS的人们有更多有趣的创新。
正如@brokenbeatnik指出的那样,有一个现货价格历史的API。 API文档:http://docs.amazonwebservices.com/AWSEC2/latest/APIReference/ApiReference-query-DescribeSpotPriceHistory.html
我觉得奇怪的是,现货价格历史记录中有一个官方 API,但他们并没有同时为按需服务执行此操作。无论如何,要回答这个问题,是的,您可以查询宣传的 AWS定价 ......
我能想到的最好的方法是检查各种服务定价页面的(客户端)来源。在那里你会发现这些表是用JS构建的,并且填充了JSON数据,你可以自己获取数据。 E.g:
这只是战斗的一半,接下来你必须选择对象格式以获得你想要的值,例如,在Python中,它获得了弗吉尼亚州的Hi-CPU按需超大Linux实例价格: / p>
>>> import json
>>> import urllib2
>>> response = urllib2.urlopen('http://aws.amazon.com/ec2/pricing/pricing-on-demand-instances.json')
>>> pricejson = response.read()
>>> pricing = json.loads(pricejson)
>>> pricing['config']['regions'][0]['instanceTypes'][3]['sizes'][1]['valueColumns'][0]['prices']['USD']
u'0.68'
免责声明:显然,这不是AWS认可的API,因此我不建议期望数据格式的稳定性或甚至源的持续存在。但它就在那里,并且它将定价数据转录为静态配置/源文件!
答案 1 :(得分:14)
对于想要使用amazon api中使用“t1.micro”之类的数据的人来说,这里是一个翻译数组
type_translation = {
'm1.small' : ['stdODI', 'sm'],
'm1.medium' : ['stdODI', 'med'],
'm1.large' : ['stdODI', 'lg'],
'm1.xlarge' : ['stdODI', 'xl'],
't1.micro' : ['uODI', 'u'],
'm2.xlarge' : ['hiMemODI', 'xl'],
'm2.2xlarge' : ['hiMemODI', 'xxl'],
'm2.4xlarge' : ['hiMemODI', 'xxxxl'],
'c1.medium' : ['hiCPUODI', 'med'],
'c1.xlarge' : ['hiCPUODI', 'xl'],
'cc1.4xlarge' : ['clusterComputeI', 'xxxxl'],
'cc2.8xlarge' : ['clusterComputeI', 'xxxxxxxxl'],
'cg1.4xlarge' : ['clusterGPUI', 'xxxxl'],
'hi1.4xlarge' : ['hiIoODI', 'xxxx1']
}
region_translation = {
'us-east-1' : 'us-east',
'us-west-2' : 'us-west-2',
'us-west-1' : 'us-west',
'eu-west-1' : 'eu-ireland',
'ap-southeast-1' : 'apac-sin',
'ap-northeast-1' : 'apac-tokyo',
'sa-east-1' : 'sa-east-1'
}
答案 2 :(得分:8)
我创造了一个快速的&amp; Python中的脏API,用于访问这些JSON文件中的定价数据并将其转换为相关值(正确的翻译和正确的实例类型)。
您可以在此处获取代码:https://github.com/erans/ec2instancespricing
在此处阅读更多相关内容:http://forecastcloudy.net/2012/04/03/quick-dirty-api-for-accessing-amazon-web-services-aws-ec2-pricing-data/
您可以将此文件用作模块并调用函数以获取包含结果的Python字典,或者您可以将其用作命令行工具以获得输出是人类可读的表,JSON或CSV以用于与其他命令行工具结合使用。
答案 3 :(得分:4)
通过下面的链接可以找到一个很好的API,您可以查询AWS定价。
如果您使用过滤器稍微玩一下,可以看到如何构建查询以返回您之后的特定信息,例如:区域,实例类型等。例如,要返回包含eu-west-1区域linux实例的EC2定价的json,您可以按照以下格式设置查询格式。
http://info.awsstream.com/instances.json?region=eu-west-1&os=linux
在上面的查询中用jml替换json,以xml格式返回信息。
注意 - 与上面其他贡献者发布的网址类似,我不相信这是官方批准的AWS API。但是,根据我在过去几天进行的一些抽查,我可以确认在发布时价格信息似乎是正确的。
答案 4 :(得分:1)
我不相信有一个API可以涵盖标准服务的一般当前价格。但是,对于EC2,您可以查看现货价格历史记录,这样您就不必猜测现货实例的市场价格。有关详细信息,请访问:
http://docs.amazonwebservices.com/AWSEC2/latest/DeveloperGuide/using-spot-instances-history.html
答案 5 :(得分:1)
我也需要一个API来检索AWS定价。鉴于可用于AWS资源的大量API,我很惊讶地发现没什么特别的。
我的首选语言是Ruby,因此我编写了一个名为AWSCosts的Gem,它提供对AWS定价的编程访问。
以下是如何查找m1.medium Linux实例的按需价格的示例。
AWSCosts.region( '我们 - 东 - 1')ec2.on_demand。(:LINUX)。价格( 'm1.medium')
答案 6 :(得分:1)
对于那些需要全面的AWS实例定价数据(EC2,RDS,ElastiCache和Redshift)的人来说,下面是Eran Sandler建议的Python模块:
https://github.com/ilia-semenov/awspricingfull
它包含上一代实例以及当前代实例(包括最新的d2系列),保留和按需定价。提供JSON,表格和CSV格式。
答案 7 :(得分:0)
如果有人需要Rails等,我在Yaml中制作了Gist正向和反向名称。
答案 8 :(得分:0)
另一个快速&amp;脏,但转换为更方便的最终数据格式
class CostsAmazon(object):
'''Class for general info on the Amazon EC2 compute cloud.
'''
def __init__(self):
'''Fetch a bunch of instance cost data from Amazon and convert it
into the following form (as self.table):
table['us-east']['linux']['m1']['small']['light']['ondemand']['USD']
'''
#
# tables_raw['ondemand']['config']['regions'
# ][0]['instanceTypes'][0]['sizes'][0]['valueColumns'][0
# ]['prices']['USD']
#
# structure of tables_raw:
# ┃
# ┗━━[key]
# ┣━━['use'] # an input 3 x ∈ { 'light', 'medium', ... }
# ┣━━['os'] # an input 2 x ∈ { 'linux', 'mswin' }
# ┣━━['scheduling'] # an input
# ┣━━['uri'] # an input (see dict above)
# ┃ # the core output from Amazon follows
# ┣━━['vers'] == 0.01
# ┗━━['config']:
# * ┣━━['regions']: 7 x
# ┃ ┣━━['region'] == ∈ { 'us-east', ... }
# * ┃ ┗━━['instanceTypes']: 7 x
# ┃ ┣━━['type']: 'stdODI'
# * ┃ ┗━━['sizes']: 4 x
# ┃ ┗━━['valueColumns']
# ┃ ┣━━['size']: 'sm'
# * ┃ ┗━━['valueColumns']: 2 x
# ┃ ┣━━['name']: ~ 'linux'
# ┃ ┗━━['prices']
# ┃ ┗━━['USD']: ~ '0.080'
# ┣━━['rate']: ~ 'perhr'
# ┣━━['currencies']: ∈ { 'USD', ... }
# ┗━━['valueColumns']: [ 'linux', 'mswin' ]
#
# The valueColumns thing is weird, it looks like they're trying
# to constrain actual data to leaf nodes only, which is a little
# bit of a conceit since they have lists in several levels. So
# we can obtain the *much* more readable:
#
# tables['regions']['us-east']['m1']['linux']['ondemand'
# ]['small']['light']['USD']
#
# structure of the reworked tables:
# ┃
# ┗━━[<region>]: 7 x ∈ { 'us-east', ... }
# ┗━━[<os>]: 2 x ∈ { 'linux', 'mswin' } # oses
# ┗━━[<type>]: 7 x ∈ { 'm1', ... }
# ┗━━[<scheduling>]: 2 x ∈ { 'ondemand', 'reserved' }
# ┗━━[<size>]: 4 x ∈ { 'small', ... }
# ┗━━[<use>]: 3 x ∈ { 'light', 'medium', ... }
# ┗━━[<currency>]: ∈ { 'USD', ... }
# ┗━━> ~ '0.080' or None
uri_base = 'http://aws.amazon.com/ec2/pricing'
tables_raw = {
'ondemand': {'scheduling': 'ondemand',
'uri': '/pricing-on-demand-instances.json',
'os': 'linux', 'use': 'light'},
'reserved-light-linux': {
'scheduling': 'ondemand',
'uri': 'ri-light-linux.json', 'os': 'linux', 'use': 'light'},
'reserved-light-mswin': {
'scheduling': 'ondemand',
'uri': 'ri-light-mswin.json', 'os': 'mswin', 'use': 'light'},
'reserved-medium-linux': {
'scheduling': 'ondemand',
'uri': 'ri-medium-linux.json', 'os': 'linux', 'use': 'medium'},
'reserved-medium-mswin': {
'scheduling': 'ondemand',
'uri': 'ri-medium-mswin.json', 'os': 'mswin', 'use': 'medium'},
'reserved-heavy-linux': {
'scheduling': 'ondemand',
'uri': 'ri-heavy-linux.json', 'os': 'linux', 'use': 'heavy'},
'reserved-heavy-mswin': {
'scheduling': 'ondemand',
'uri': 'ri-heavy-mswin.json', 'os': 'mswin', 'use': 'heavy'},
}
for key in tables_raw:
# expand to full URIs
tables_raw[key]['uri'] = (
'%s/%s'% (uri_base, tables_raw[key]['uri']))
# fetch the data from Amazon
link = urllib2.urlopen(tables_raw[key]['uri'])
# adds keys: 'vers' 'config'
tables_raw[key].update(json.loads(link.read()))
link.close()
# canonicalize the types - the default is pretty annoying.
#
self.currencies = set()
self.regions = set()
self.types = set()
self.intervals = set()
self.oses = set()
self.sizes = set()
self.schedulings = set()
self.uses = set()
self.footnotes = {}
self.typesizes = {} # self.typesizes['m1.small'] = [<region>...]
self.table = {}
# grovel through Amazon's tables_raw and convert to something orderly:
for key in tables_raw:
scheduling = tables_raw[key]['scheduling']
self.schedulings.update([scheduling])
use = tables_raw[key]['use']
self.uses.update([use])
os = tables_raw[key]['os']
self.oses.update([os])
config_data = tables_raw[key]['config']
self.currencies.update(config_data['currencies'])
for region_data in config_data['regions']:
region = self.instance_region_from_raw(region_data['region'])
self.regions.update([region])
if 'footnotes' in region_data:
self.footnotes[region] = region_data['footnotes']
for instance_type_data in region_data['instanceTypes']:
instance_type = self.instance_types_from_raw(
instance_type_data['type'])
self.types.update([instance_type])
for size_data in instance_type_data['sizes']:
size = self.instance_size_from_raw(size_data['size'])
typesize = '%s.%s' % (instance_type, size)
if typesize not in self.typesizes:
self.typesizes[typesize] = set()
self.typesizes[typesize].update([region])
self.sizes.update([size])
for size_values in size_data['valueColumns']:
interval = size_values['name']
self.intervals.update([interval])
for currency in size_values['prices']:
cost = size_values['prices'][currency]
self.table_add_row(region, os, instance_type,
size, use, scheduling,
currency, cost)
def table_add_row(self, region, os, instance_type, size, use, scheduling,
currency, cost):
if cost == 'N/A*':
return
table = self.table
for key in [region, os, instance_type, size, use, scheduling]:
if key not in table:
table[key] = {}
table = table[key]
table[currency] = cost
def instance_region_from_raw(self, raw_region):
'''Return a less intelligent given EC2 pricing name to the
corresponding region name.
'''
regions = {
'apac-tokyo' : 'ap-northeast-1',
'apac-sin' : 'ap-southeast-1',
'eu-ireland' : 'eu-west-1',
'sa-east-1' : 'sa-east-1',
'us-east' : 'us-east-1',
'us-west' : 'us-west-1',
'us-west-2' : 'us-west-2',
}
return regions[raw_region] if raw_region in regions else raw_region
def instance_types_from_raw(self, raw_type):
types = {
# ondemand reserved
'stdODI' : 'm1', 'stdResI' : 'm1',
'uODI' : 't1', 'uResI' : 't1',
'hiMemODI' : 'm2', 'hiMemResI' : 'm2',
'hiCPUODI' : 'c1', 'hiCPUResI' : 'c1',
'clusterComputeI' : 'cc1', 'clusterCompResI' : 'cc1',
'clusterGPUI' : 'cc2', 'clusterGPUResI' : 'cc2',
'hiIoODI' : 'hi1', 'hiIoResI' : 'hi1'
}
return types[raw_type]
def instance_size_from_raw(self, raw_size):
sizes = {
'u' : 'micro',
'sm' : 'small',
'med' : 'medium',
'lg' : 'large',
'xl' : 'xlarge',
'xxl' : '2xlarge',
'xxxxl' : '4xlarge',
'xxxxxxxxl' : '8xlarge'
}
return sizes[raw_size]
def cost(self, region, os, instance_type, size, use, scheduling,
currency):
try:
return self.table[region][os][instance_type][
size][use][scheduling][currency]
except KeyError as ex:
return None
答案 9 :(得分:0)
这是另一个未经批准的“api”,它涵盖了保留的实例:http://aws.amazon.com/ec2/pricing/pricing-reserved-instances.json
答案 10 :(得分:0)
没有定价api,但上面提到了非常好的价格。 除了ec2价格开膛手,我想分享我的rds和弹性价格开膛手:
https://github.com/evgeny-gridasov/rdsinstancespricing https://github.com/evgeny-gridasov/elasticachepricing
答案 11 :(得分:0)
有reply to a similar question列出了包含价格的所有.js
个文件,这些文件几乎不是JSON文件(只删除了callback(...);
个语句。)
以下是Linux On Demand价格的例子:http://aws-assets-pricing-prod.s3.amazonaws.com/pricing/ec2/linux-od.js
(获取完整列表directly on that reply)