我开发了一个内核模块,它分配一些内核内存并在用户软件打开设备时将其重新映射到FPGA的物理寄存器,它还写入硬件寄存器,触发中断,最终由探测功能使用。内核检测模块init的IRQ号,在我的情况下为61。 (我到目前为止阅读了来自O'Reilly的优秀LDD3书籍,但由于我是内核世界的新手,我在使我的驱动程序运行良好时遇到了麻烦)
因此,我使用一个名为“regedit”的小软件从内核本身和用户空间访问硬件寄存器。为了从内核访问寄存器,我使用了ioremap,并编写了mmap函数,允许regedit使用remap_pfn_range从用户空间访问寄存器。
我的第一个问题是,我认为有一种更好的方法,而不是单独调用ioremap和remap_pfn_range来做同样的事情,但我不知道如何分配内存,重新映射,从内核访问它,以及通过它时间将它提供给用户空间。
我的第二个问题是,当我安装模块时,我看到我的驱动程序能够使用ioremap读取和写入寄存器,因为我通过触发中断(通过在偏移0处写入寄存器)成功检测到IRQ编号,当打开设备时,我的irq处理程序被调用,并通过在寄存器中写入0来成功确认中断。但是,因为有一个但是,当我尝试使用我的软regedit读取相同的寄存器时,我得到一个总线错误。
我的猜测是只有三个寄存器是物理连接的(偏移0,4和8),也许当我认为我正在读取一个32位寄存器时,内核实际上正在读取一个更大的缓冲区(PAGE_SIZE对齐我认为)并访问禁区。 (为了证明问题来自我的驱动程序,我在我的regedit软件中使用/ dev / mem,并且工作正常)
我使用处理器ARM Cortex A9在Xilinx Zynq ZC702板上使用Linux内核3.12。
以下是我的驱动程序的代码:
#ifndef DRIVER_H_
#define DRIVER_H_
/* --------------------------------------------------------------
* External References
* ------------------------------------------------------------*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/cdev.h>
#include <linux/moduleparam.h>
/* --------------------------------------------------------------
* Application Includes
* ------------------------------------------------------------*/
/* --------------------------------------------------------------
* Constants Definition
* ------------------------------------------------------------*/
#define MODULE_NAME "mydriver"
#define DEFAULT_MAJOR_NUMBER 0 // If zero, major number will be automatically allocated
#define DEFAULT_MINOR_NUMBER 0
#define NB_DEVICES 1 // Number of devices to register
/*
* Hardware defines
*/
#define NB_PAGES 256 // Number of pages of the memory mapping
#define REG_IRQ 0x43C00000 // IRQ register address
/*
* Modules params
*/
static unsigned int irq_param = 0;
/*
* Kernel module information
*/
MODULE_LICENSE("GPL");
MODULE_AUTHOR("AwaX");
MODULE_VERSION("0.1");
MODULE_ALIAS(MODULE_NAME);
MODULE_DESCRIPTION("Kernel module which handles the hardware interrupts and process them");
module_param(irq_param, int, S_IRUSR | S_IWUSR | S_IRGRP | S_IWGRP);
MODULE_PARM_DESC(irq_param, "The IRQ line number to be used");
/* --------------------------------------------------------------
* Macros Definition
* ------------------------------------------------------------*/
#define LOG(kernLvl, str, tag) printk(kernLvl "%-6.6s %s() : "str"\n", tag, (char*) __func__);
#define LOGA(kernLvl, str, tag,...) printk(kernLvl "%-6.6s %s() : "str"\n", tag, (char*) __func__, __VA_ARGS__);
#define LOG_TRACE(str) LOG(KERN_DEBUG, str, "KTRACE")
#define LOG_DEBUG(str) LOG(KERN_INFO, str, "KDEBUG")
#define LOG_INFO(str) LOG(KERN_NOTICE, str, "KINFO")
#define LOG_IT(str) LOG(KERN_NOTICE, str, "IT")
#define LOG_WARN(str) LOG(KERN_WARNING, str, "KWARN")
#define LOG_ERROR(str) LOG(KERN_ERR, str, "KERROR")
#define LOG_FATAL(str) LOG(KERN_ALERT, str, "KFATAL")
#define LOG_TRACE_(str,...) LOGA(KERN_DEBUG, str, "KTRACE", __VA_ARGS__)
#define LOG_DEBUG_(str,...) LOGA(KERN_INFO, str, "KDEBUG", __VA_ARGS__)
#define LOG_INFO_(str,...) LOGA(KERN_NOTICE, str, "KINFO", __VA_ARGS__)
#define LOG_IT_(str,...) LOGA(KERN_NOTICE, str, "IT", __VA_ARGS__)
#define LOG_WARN_(str,...) LOGA(KERN_WARNING, str, "KWARN", __VA_ARGS__)
#define LOG_ERROR_(str,...) LOGA(KERN_ERR, str, "KERROR", __VA_ARGS__)
#define LOG_FATAL_(str,...) LOGA(KERN_ALERT, str, "KFATAL", __VA_ARGS__)
/* --------------------------------------------------------------
* Types Definition
* ------------------------------------------------------------*/
/*
* Internal data structure
*/
typedef struct _module_data {
int major; // Major device number
int minor; // Minor device number
dev_t mmap_dev; // Holds device numbers (major and minor)
struct cdev mmap_cdev; // Kernel internal struct representing the device
int *vmalloc_area; // Pointer to the vmalloc'd area - always page aligned
int *kmalloc_area; // Pointer to the kmalloc'd area, rounded up to a page boundary
void *kmalloc_ptr; // Original pointer for kmalloc'd area as returned by kmalloc
// Mapping
volatile int *map_area; // Base address of the registers kernel memory
volatile void *io_area; // Base address of the registers i/o physical memory
// Interrupts
unsigned int irq; // Interrupt number
} module_data;
/* --------------------------------------------------------------
* Functions Definition
* ------------------------------------------------------------*/
#endif /* DRIVER_H_ */
/* --------------------------------------------------------------
* External References
* ------------------------------------------------------------*/
#include "driver.h"
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/memory.h>
#include <linux/vmalloc.h>
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/types.h>
#include <linux/io.h>
#include <linux/errno.h>
#include <linux/delay.h>
#include <linux/slab.h>
#include <asm-generic/errno-base.h>
/* --------------------------------------------------------------
* Application Includes
* ------------------------------------------------------------*/
/* --------------------------------------------------------------
* Static data
* ------------------------------------------------------------*/
// Internal data
static module_data *_module;
/* --------------------------------------------------------------
* Local Functions Definition
* ------------------------------------------------------------*/
/*
* Module functions
*/
static int __init my_module_init (void);
static void __exit my_module_cleanup (void);
static int my_module_open (struct inode *inode, struct file *filp);
static int my_module_release (struct inode *inode, struct file *filp);
static int my_module_mmap (struct file *filp, struct vm_area_struct *vma);
/*
* Static functions
*/
static void my_vma_open (struct vm_area_struct *vma);
static void my_vma_close (struct vm_area_struct *vma);
static irqreturn_t my_irq_handler (int irq, void *dev_id, struct pt_regs *regs);
static int my_allocate_device (void);
static int my_register_device (void);
static unsigned int my_probe_irq (void);
static int my_mmap_kmem (struct file *filp, struct vm_area_struct *vma);
static int my_mmap_vmem (struct file *filp, struct vm_area_struct *vma);
/*
* Specifies the functions associated with the device operations.
*/
static struct file_operations _module_fops = {
.owner = THIS_MODULE,
.open = my_module_open,
.release = my_module_release,
.mmap = my_module_mmap,
};
/*
* Specifies the functions associated with the remap operations.
*/
static struct vm_operations_struct _module_vmops = {
.open = my_vma_open,
.close = my_vma_close,
};
/* --------------------------------------------------------------
* Functions Implementation
* ------------------------------------------------------------*/
/*****************************************************************************
* Initialization function of the module which allocates the major and minor
* numbers and registers the device to /proc/devices. The creation of the
* device in /dev must be done by an external script.
*
* @return
* SUCCESS : 0
* FAILURE : Negative error code.
*****************************************************************************/
static int __init my_module_init (void) {
unsigned int irqprobe = 0;
int err = 0;
int i = 0;
LOG_INFO_("Initializing module %s", MODULE_NAME);
LOG_INFO_("Module param : irq_param = %u", irq_param);
/*
* Init internal data
*/
_module = kmalloc(sizeof(module_data), GFP_KERNEL);
memset(_module, 0, sizeof(module_data));
if (_module == NULL) {
goto out;
}
_module->major = DEFAULT_MAJOR_NUMBER;
_module->minor = DEFAULT_MINOR_NUMBER;
_module->map_area = NULL;
_module->io_area = NULL;
_module->irq = irq_param;
/*
* Allocate kmalloc memory
*/
_module->kmalloc_ptr = kmalloc((NB_PAGES + 2) * PAGE_SIZE, GFP_KERNEL);
if (_module->kmalloc_ptr == NULL) {
err = -ENOMEM;
goto out_kfree;
}
// Round it up to the page bondary
_module->kmalloc_area = (int *) ((((unsigned long) _module->kmalloc_ptr) + PAGE_SIZE - 1) & PAGE_MASK);
// Use the kernel memory to access registers from the module
_module->map_area = _module->kmalloc_area;
/*
* Allocate vmalloc memory
*/
_module->vmalloc_area = (int *) vmalloc(NB_PAGES * PAGE_SIZE);
if (_module->vmalloc_area == NULL) {
err = -ENOMEM;
goto out_vfree;
}
/*
* Remap physical addresses
*/
_module->io_area = ioremap(REG_IRQ, NB_PAGES * PAGE_SIZE);
if (_module->io_area == NULL) {
LOG_ERROR_("Physical memory remapping failed (base_addr=%#x, size=%#lx)", REG_IRQ, NB_PAGES * PAGE_SIZE);
goto out_iofree;
}
/*
* Allocates the device numbers
*/
err = my_allocate_device();
if (err) {
LOG_ERROR_("Device allocation failed with code : %d", err);
goto out_unalloc_region;
}
// If no IRQ number has been specified
if (_module->irq <= 0) {
// Probes for an IRQ line number
LOG_INFO("Probing IRQ number...");
irqprobe = my_probe_irq();
if (irqprobe == 0) { // Probe failed
LOG_ERROR("IRQ probing failed : cannot find IRQ number");
} else if (irqprobe < 0) { // Probe error
LOG_ERROR_("IRQ probing failed with error code : %d", err);
} else {
// If an irq number is found
LOG_INFO_("IRQ number detected : %u", irqprobe);
_module->irq = irqprobe;
}
} else { // If an irq number has been specified via a module parameter
LOG_INFO_("IRQ number param specified : irq=%u", _module->irq);
}
// Registers the device making it live immediately
err = my_register_device();
if (err) {
LOG_ERROR_("Device register failed with code : %d", err);
goto out_unregister;
}
LOG_INFO_("Module %s initialized successfully !", MODULE_NAME);
return 0;
/*
* Error fallbacks
*/
out_unregister:
LOG_DEBUG_("Deallocating chrdev for %s", MODULE_NAME);
cdev_del(&_module->mmap_cdev);
// Unreserve the pages
LOG_DEBUG("Unreserving memory pages");
for (i = 0; i < NB_PAGES * PAGE_SIZE; i += PAGE_SIZE) {
SetPageReserved(vmalloc_to_page((void *) (((unsigned long) _module->vmalloc_area) + i)));
SetPageReserved(virt_to_page(((unsigned long )_module->kmalloc_area) + i));
}
out_unalloc_region:
LOG_DEBUG_("Unregistering device %s", MODULE_NAME);
unregister_chrdev_region(_module->mmap_dev, NB_DEVICES);
out_iofree:
iounmap(_module->io_area);
out_vfree:
vfree(_module->vmalloc_area);
out_kfree:
kfree(_module->kmalloc_ptr);
out:
return err;
}
/*****************************************************************************
* Cleanup function of the module which unregisters the major number and
* removes the created device from the system.
*
* @return
* void
*****************************************************************************/
static void __exit my_module_cleanup (void) {
LOG_INFO_("Cleaning up module %s", MODULE_NAME);
// Unregisters a range of device numbers.
unregister_chrdev_region(_module->mmap_dev, NB_DEVICES);
LOG_INFO_("Unregistered device %s", MODULE_NAME);
// Free kernel memory
vfree(_module->vmalloc_area);
kfree(_module->kmalloc_ptr);
kfree(_module);
// Remove the cdev from the system, possibly freeing the structure itself
cdev_del(&_module->mmap_cdev);
LOG_INFO_("Deallocated chrdev for %s", MODULE_NAME);
}
/*****************************************************************************
* Open function of the module which makes this module accessible from the
* user space.
*
* @return
* SUCCESS : 0
* FAILURE : Negative error code.
*****************************************************************************/
static int my_module_open (struct inode *inode, struct file *filp) {
int err = 0;
// If an interrupt line has been requested
if (_module->irq > 0) {
// Registers the interrupt handler to the kernel
err = request_irq(_module->irq, (irq_handler_t) my_irq_handler, 0, MODULE_NAME, _module);
if (err) {
LOG_ERROR_("%s : Cannot get assigned irq %d, request_irq() failed, code=%d", MODULE_NAME, _module->irq, err);
_module->irq = -1;
return err;
} else {
LOG_INFO_("IRQ number %u assigned successfully to module %s", _module->irq, MODULE_NAME);
}
} else {
LOG_ERROR("Invalid IRQ number : the device will not see the hardware interrupts");
}
LOG_INFO_("%s opened successfully", MODULE_NAME);
return 0;
}
/*****************************************************************************
* Close function of the module which releases the use of this module from
* the user space.
*
* @return
* SUCCESS : 0
* FAILURE : Negative error code.
*****************************************************************************/
static int my_module_release (struct inode *inode, struct file *filp) {
LOG_INFO_("%s closing...", MODULE_NAME);
// Removes the interrupt handler from kernel
LOG_INFO_("Releasing irq number %u", _module->irq);
free_irq(_module->irq, _module);
LOG_INFO_("%s closed", MODULE_NAME);
return 0;
}
/*****************************************************************************
* Creates a new mapping in the virtual address space of the calling process.
* It makes possible for a user process to access physical memory in the
* kernel space.
*
* @param filp
* The file or device.
* @param vma
* The virtual memory area into which the page range is being
* mapped.
* @return
* SUCCESS : 0
* FAILURE : Negative error code.
*****************************************************************************/
static int my_module_mmap (struct file *filp, struct vm_area_struct *vma) {
unsigned long start = vma->vm_start; // Virtual address where remapping begins
unsigned long end = vma->vm_end;
unsigned long length = end - start;
unsigned long maxLength = NB_PAGES * PAGE_SIZE;
unsigned long pgoff = vma->vm_pgoff; // PFN of the physAddr to which vAddr is mapped
// Checks length - do not allow larger mappings than the number of pages allocated
if (length > maxLength) {
LOG_ERROR_("Specified virtual memory area is too big : 0x%lx , 0x%lx", length, maxLength);
return -EIO;
}
// At offset 0
if (pgoff == 0) {
// we map the vmalloc'd area
LOG_DEBUG_("Allocating virtual memory, start=%#lx, length=%#lx, pgoff=%#lx", start, length, pgoff);
return my_mmap_vmem(filp, vma);
} else {
// we map the kmalloc'd area
LOG_DEBUG_("Allocating kernel memory, start=%#lx, length=%#lx, pgoff=%#lx", start, length, pgoff);
return my_mmap_kmem(filp, vma);
}
return -EIO;
}
static void my_vma_open (struct vm_area_struct* vma) {
LOG_INFO_("%s VMA open, virtAddr=%#lx, physAddr=%#lx", MODULE_NAME, vma->vm_start, vma->vm_pgoff << PAGE_SHIFT);
}
static void my_vma_close (struct vm_area_struct* vma) {
LOG_INFO_("%s VMA close", MODULE_NAME);
}
/*****************************************************************************
* Interrupt handler which :
* - Reads the registers to know the source of the IT,
* - Clears the IT and wakes up the handler task.
*
* @param irq
* The interrupt number requested.
* @param dev_id
* Pointer to the device structure passed to the function
* request_irq() containing internal data (used when the driver
* manages several instances of the same device).
* @param regs
* Used for debug. Holds a snapshot of the processor's context
* before the processor entered interrupted code.
* @return
* SUCCESS : 0
* FAILURE : Negative error code.
*****************************************************************************/
static irqreturn_t my_irq_handler (int irq, void *dev_id, struct pt_regs *regs) {
module_data *moduleData = dev_id;
LOG_IT_("%s interrupted, interrupt number = %d", MODULE_NAME, irq);
if (moduleData != NULL) {
// Resets irq
iowrite32(0x0, _module->io_area);
wmb();
} else {
LOG_ERROR("Device structure is NULL");
}
return IRQ_HANDLED;
}
/*****************************************************************************
* Allocates major and minor numbers for this device.
*
* @return
* SUCCESS : 0
* FAILURE : Negative error code.
*****************************************************************************/
static int my_allocate_device (void) {
int err = 0;
// If a non zero major number is specified
if (_module->major) {
// Updates the dev structure used as input for register_chrdev_region
_module->mmap_dev = MKDEV(_module->major, _module->minor);
// Registers a range of device numbers.
err = register_chrdev_region(_module->mmap_dev, NB_DEVICES, MODULE_NAME);
} else { // If major number is zero, then allocates it dynamically
// Allocates a range of char device numbers chosen dynamically
err = alloc_chrdev_region(&_module->mmap_dev, _module->minor, NB_DEVICES, MODULE_NAME);
_module->major = MAJOR(_module->mmap_dev);
}
// Checks result
if (err) {
LOG_ERROR_("cannot get major number %d", _module->major);
return err;
} else {
LOG_INFO_("Registered device %s : major=%d, minor=%d", MODULE_NAME, _module->major, _module->minor);
}
// Initializes cdev and file operations
cdev_init(&_module->mmap_cdev, &_module_fops);
_module->mmap_cdev.owner = THIS_MODULE;
_module->mmap_cdev.ops = &_module_fops;
return 0;
}
/*****************************************************************************
* Registers the device, makes it live immediately, therefore all
* initialization routines must be done before calling this function.
*
* @return
* SUCCESS : 0
* FAILURE : Negative error code.
*****************************************************************************/
static int my_register_device (void) {
int err = 0;
// Adds the device to the system making it live immediately
err = cdev_add(&_module->mmap_cdev, _module->mmap_dev, NB_DEVICES);
if (err) {
LOG_ERROR("Could not allocate chrdev");
return err;
} else {
LOG_INFO_("Allocated chrdev for %s", MODULE_NAME);
}
return 0;
}
/*****************************************************************************
* This function uses the probe functions of the kernel to find the irq
* number of the hardware device.
*
* @return
* SUCCESS : 0
* FAILURE : Negative error code.
*****************************************************************************/
static unsigned int my_probe_irq (void) {
unsigned int irq = -1;
int count = 0;
do {
volatile unsigned long mask;
// Reset the interrupts
iowrite32(0x0, _module->io_area);
wmb(); // Memory barrier
// Start kernel probing
mask = probe_irq_on();
// Trigger all interrupts
iowrite32(0xffffffff, _module->io_area);
wmb(); // Memory barrier
// Wait for it
ndelay(1000);
// Try to find which interrupt occurred
irq = probe_irq_off(mask);
} while (irq < 0 && count++ < 5);
return irq;
}
/*****************************************************************************
* Helper function, mmap's the vmalloc'd area which is not physically
* contiguous.
*
* @return
* SUCCESS : 0
* FAILURE : Negative error code.
*****************************************************************************/
static int my_mmap_vmem (struct file *filp, struct vm_area_struct *vma) {
unsigned long start = vma->vm_start;
unsigned long end = vma->vm_end;
unsigned long pfn = 0;
long length = end - start;
int ret = 0;
// Check length - do not allow larger mappings than the number of pages allocated
if (length > NB_PAGES * PAGE_SIZE) {
LOG_ERROR_("Specified length (%lu) is larger than the number of pages allocated", length);
return -EIO;
}
// Loop over all pages, map it page individually
while (length > 0) {
pfn = vmalloc_to_pfn(_module->vmalloc_area);
ret = remap_pfn_range(vma, start, pfn, PAGE_SIZE, PAGE_SHARED);
if (ret < 0) {
LOG_ERROR_("remap_pfn_range() failed with error %d, addr=%#lx, offset=%#lx", ret, start, pfn);
return ret;
}
start += PAGE_SIZE;
_module->vmalloc_area += PAGE_SIZE;
length -= PAGE_SIZE;
}
vma->vm_ops = &_module_vmops; // Specifies open_vma() and close_vma() functions
my_vma_open(vma); // Calls explicitely open_vma() as its not done by calling mmap()
return 0;
}
/*****************************************************************************
* Helper function, mmap's the kmalloc'd area which is physically contiguous.
*
* @return
* SUCCESS : 0
* FAILURE : Negative error code.
*****************************************************************************/
static int my_mmap_kmem (struct file *filp, struct vm_area_struct *vma) {
unsigned long start = vma->vm_start;
unsigned long end = vma->vm_end;
long length = end - start;
int ret = 0;
// Check length - do not allow larger mappings than the number of pages allocated
if (length > NB_PAGES * PAGE_SIZE) {
LOG_ERROR_("Specified length (%lu) is larger than the number of pages allocated", length);
return -EIO;
}
// Map the whole physically contiguous area in one piece
//pfn = virt_to_phys((void *) _module->kmalloc_area) >> PAGE_SHIFT;
ret = remap_pfn_range(vma, start, vma->vm_pgoff, length, vma->vm_page_prot);
if (ret < 0) {
return ret;
}
vma->vm_ops = &_module_vmops; // Specifies open_vma() and close_vma() functions
my_vma_open(vma); // Calls explicitely open_vma() as its not done by calling mmap()
return 0;
}
/*
* MANDATORY
*
* Used by kernel to load this module and specifies its entry points.
*/
module_init(my_module_init);
module_exit(my_module_cleanup);