我正在尝试使用ADAM Optimization在tensorflow上实现网络多个gpu。
我正在处理来自Cifar10_multigpu的代码,但它看起来当梯度调用第二个塔时,它会调用第一个梯度并在两个塔的平均值上生成错误。 这两个塔的代码就是这个
for d in devs: with tf.device(d): with tf.name_scope('%s_%d' % (tf_model.TOWER_NAME, i)) as scope: loss = tower_loss(scope) tf.get_variable_scope().reuse_variables() summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope) grads = opt.compute_gradients(loss) print('\n'.join('{}: {}'.format(*k) for k in enumerate(grads))) tower_grads.append(grads) i +=1
这会产生每个塔:
stream, target= placeholder_inputs(FLAGS.batch_size*tf_model.ANGLES/FLAGS.num_gpus)
logits = tf_model.inference_noisy_simulate(stream)
_ = tf_model.loss(logits, target)
losses = tf.get_collection('losses', scope)
total_loss = tf.add_n(losses, name='total_loss')
观察第一座塔产生的梯度:
0: (None, <tensorflow.python.ops.variables.Variable object at 0x7fca11d0ae10>)
1: (<tf.Tensor 'tower_0/gradients/tower_0/conv1/Conv2D_grad/tuple/control_dependency_1:0' shape=(1, 1, 8, 16) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0c351b10>)
2: (<tf.Tensor 'tower_0/gradients/tower_0/conv1/BiasAdd_grad/tuple/control_dependency_1:0' shape=(16,) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0c380dd0>)
3: (<tf.Tensor 'tower_0/gradients/tower_0/conv2/Conv2D_grad/tuple/control_dependency_1:0' shape=(45, 4, 16, 16) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0c351a10>)
4: (<tf.Tensor 'tower_0/gradients/tower_0/conv2/BiasAdd_grad/tuple/control_dependency_1:0' shape=(16,) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0c3a6dd0>)
5: (<tf.Tensor 'tower_0/gradients/tower_0/conv3/Conv2D_grad/tuple/control_dependency_1:0' shape=(45, 4, 16, 32) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0c3a6490>)
6: (<tf.Tensor 'tower_0/gradients/tower_0/conv3/BiasAdd_grad/tuple/control_dependency_1:0' shape=(32,) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0c351990>)
7: (<tf.Tensor 'tower_0/gradients/tower_0/conv4/Conv2D_grad/tuple/control_dependency_1:0' shape=(45, 4, 32, 64) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0c351890>)
8: (<tf.Tensor 'tower_0/gradients/tower_0/conv4/BiasAdd_grad/tuple/control_dependency_1:0' shape=(64,) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0c3b7790>)
9: (<tf.Tensor 'tower_0/gradients/tower_0/conv5/Conv2D_grad/tuple/control_dependency_1:0' shape=(45, 4, 64, 128) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0c2d9110>)
10: (<tf.Tensor 'tower_0/gradients/tower_0/conv5/BiasAdd_grad/tuple/control_dependency_1:0' shape=(128,) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0c2849d0>)
11: (<tf.Tensor 'tower_0/gradients/tower_0/conv6/Conv2D_grad/tuple/control_dependency_1:0' shape=(45, 4, 128, 256) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0c2e6f10>)
12: (<tf.Tensor 'tower_0/gradients/tower_0/conv6/BiasAdd_grad/tuple/control_dependency_1:0' shape=(256,) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0c2afed0>)
13: (<tf.Tensor 'tower_0/gradients/tower_0/fc1/MatMul_grad/tuple/control_dependency_1:0' shape=(18944, 4096) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0c1f9550>)
14: (<tf.Tensor 'tower_0/gradients/tower_0/fc1/add_grad/tuple/control_dependency_1:0' shape=(4096,) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0c214a10>)
15: (<tf.Tensor 'tower_0/gradients/tower_0/fc1_1/MatMul_grad/tuple/control_dependency_1:0' shape=(4096, 1024) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0c23dfd0>)
16: (<tf.Tensor 'tower_0/gradients/tower_0/fc1_1/add_grad/tuple/control_dependency_1:0' shape=(1024,) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0c269bd0>)
17: (<tf.Tensor 'tower_0/gradients/tower_0/softmax_linear/MatMul_grad/tuple/control_dependency_1:0' shape=(1024, 360) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0c1d1a50>)
18: (<tf.Tensor 'tower_0/gradients/tower_0/softmax_linear/softmax_linear_grad/tuple/control_dependency_1:0' shape=(360,) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0c1def50>)
,第二个产生了这个;
0: (None, <tensorflow.python.ops.variables.Variable object at 0x7fca11d0ae10>)
1: (None, <tensorflow.python.ops.variables.Variable object at 0x7fca0c351b10>)
2: (None, <tensorflow.python.ops.variables.Variable object at 0x7fca0c380dd0>)
3: (None, <tensorflow.python.ops.variables.Variable object at 0x7fca0c351a10>)
4: (None, <tensorflow.python.ops.variables.Variable object at 0x7fca0c3a6dd0>)
5: (None, <tensorflow.python.ops.variables.Variable object at 0x7fca0c3a6490>)
6: (None, <tensorflow.python.ops.variables.Variable object at 0x7fca0c351990>)
7: (None, <tensorflow.python.ops.variables.Variable object at 0x7fca0c351890>)
8: (None, <tensorflow.python.ops.variables.Variable object at 0x7fca0c3b7790>)
9: (None, <tensorflow.python.ops.variables.Variable object at 0x7fca0c2d9110>)
10: (None, <tensorflow.python.ops.variables.Variable object at 0x7fca0c2849d0>)
11: (None, <tensorflow.python.ops.variables.Variable object at 0x7fca0c2e6f10>)
12: (None, <tensorflow.python.ops.variables.Variable object at 0x7fca0c2afed0>)
13: (None, <tensorflow.python.ops.variables.Variable object at 0x7fca0c1f9550>)
14: (None, <tensorflow.python.ops.variables.Variable object at 0x7fca0c214a10>)
15: (None, <tensorflow.python.ops.variables.Variable object at 0x7fca0c23dfd0>)
16: (None, <tensorflow.python.ops.variables.Variable object at 0x7fca0c269bd0>)
17: (None, <tensorflow.python.ops.variables.Variable object at 0x7fca0c1d1a50>)
18: (None, <tensorflow.python.ops.variables.Variable object at 0x7fca0c1def50>)
19: (<tf.Tensor 'tower_1/gradients/tower_1/conv1/Conv2D_grad/tuple/control_dependency_1:0' shape=(1, 1, 8, 16) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0c178c50>)
20: (<tf.Tensor 'tower_1/gradients/tower_1/conv1/BiasAdd_grad/tuple/control_dependency_1:0' shape=(16,) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0bfbb490>)
21: (<tf.Tensor 'tower_1/gradients/tower_1/conv2/Conv2D_grad/tuple/control_dependency_1:0' shape=(45, 4, 16, 16) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0bfda950>)
22: (<tf.Tensor 'tower_1/gradients/tower_1/conv2/BiasAdd_grad/tuple/control_dependency_1:0' shape=(16,) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0bf91bd0>)
23: (<tf.Tensor 'tower_1/gradients/tower_1/conv3/Conv2D_grad/tuple/control_dependency_1:0' shape=(45, 4, 16, 32) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0bfcb590>)
24: (<tf.Tensor 'tower_1/gradients/tower_1/conv3/BiasAdd_grad/tuple/control_dependency_1:0' shape=(32,) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0bf39e90>)
25: (<tf.Tensor 'tower_1/gradients/tower_1/conv4/Conv2D_grad/tuple/control_dependency_1:0' shape=(45, 4, 32, 64) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0bf499d0>)
26: (<tf.Tensor 'tower_1/gradients/tower_1/conv4/BiasAdd_grad/tuple/control_dependency_1:0' shape=(64,) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0bf14fd0>)
27: (<tf.Tensor 'tower_1/gradients/tower_1/conv5/Conv2D_grad/tuple/control_dependency_1:0' shape=(45, 4, 64, 128) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0bf39150>)
28: (<tf.Tensor 'tower_1/gradients/tower_1/conv5/BiasAdd_grad/tuple/control_dependency_1:0' shape=(128,) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0bebd8d0>)
29: (<tf.Tensor 'tower_1/gradients/tower_1/conv6/Conv2D_grad/tuple/control_dependency_1:0' shape=(45, 4, 128, 256) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0bf23110>)
30: (<tf.Tensor 'tower_1/gradients/tower_1/conv6/BiasAdd_grad/tuple/control_dependency_1:0' shape=(256,) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0bf04610>)
31: (<tf.Tensor 'tower_1/gradients/tower_1/fc1/MatMul_grad/tuple/control_dependency_1:0' shape=(18944, 4096) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0bebdc50>)
32: (<tf.Tensor 'tower_1/gradients/tower_1/fc1/add_grad/tuple/control_dependency_1:0' shape=(4096,) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0bebd310>)
33: (<tf.Tensor 'tower_1/gradients/tower_1/fc1_1/MatMul_grad/tuple/control_dependency_1:0' shape=(4096, 1024) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0be96e10>)
34: (<tf.Tensor 'tower_1/gradients/tower_1/fc1_1/add_grad/tuple/control_dependency_1:0' shape=(1024,) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0be96990>)
35: (<tf.Tensor 'tower_1/gradients/tower_1/softmax_linear/MatMul_grad/tuple/control_dependency_1:0' shape=(1024, 360) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0be52c90>)
36: (<tf.Tensor 'tower_1/gradients/tower_1/softmax_linear/softmax_linear_grad/tuple/control_dependency_1:0' shape=(360,) dtype=float32>, <tensorflow.python.ops.variables.Variable object at 0x7fca0bf56f50>)
我想知道如何从第二个删除第一个无,但没有目标索引,所以我可以为更多的塔。
答案 0 :(得分:0)
我已经找到了错误。我使用了一个可训练的变量用于学习速率(我想要追踪lr但看起来不太可能),并且还添加了变量列表以便由ad在ad上进行计算。我不确定这是否是正确的方法,但它看起来有效。
with tf.Graph().as_default(), tf.device('/cpu:0'):
devs = ['/job:prs/task:0/gpu:0','/job:worker/task:0/gpu:0'] #
global_step = tf.get_variable('global_step', [], initializer=tf.constant_initializer(0), trainable=False)
num_batches_per_epoch = dt_fdr.FLS_PER_ANGLE/ FLAGS.batch_size
#lr = tf.Variable(tf.constant(FLAGS.learning_rate, dtype=tf.float32))
opt = tf.train.AdamOptimizer(FLAGS.learning_rate)
tower_grads = []
for i in xrange(FLAGS.num_gpus):
with tf.device(devs[i]):
with tf.name_scope('%s_%d' % (tf_model.TOWER_NAME, i)) as scope:
loss = tower_loss(scope)
tf.get_variable_scope().reuse_variables()
summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)
#"print('\n'.join('{}: {}'.format(*k) for k in enumerate(summaries)))
grads = opt.compute_gradients(loss, tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope))
#print('\n'.join('{}: {}'.format(*k) for k in enumerate(grads)))
tower_grads.append(grads)
grads = average_gradients(tower_grads)
#summaries.append(tf.scalar_summary('learning_rate', lr))
for grad, var in grads:
if grad:
summaries.append(
tf.histogram_summary(var.op.name + '/gradients', grad))
apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
for var in tf.trainable_variables():
summaries.append(tf.histogram_summary(var.op.name, var))
train_op = apply_gradient_op
saver = tf.train.Saver(tf.all_variables())
summary_op = tf.merge_summary(summaries)
init = tf.initialize_all_variables()
sess = tf.Session("grpc://nelson-lab:2500",config=tf.ConfigProto(
allow_soft_placement=True,
log_device_placement=FLAGS.log_device_placement))
sess.run(init)
我想知道是否有人还尝试使用adam进行一些双gpu培训。
此致
答案 1 :(得分:0)
附加
如果您有计划在培训阶段更新学习率,请在下面声明。
lr = tf.Variable(FLAGS.learning_rate, trainable=False)
opt = tf.train.AdamOptimizer(lr)
之后
sess.run(tf.assign(lr, new_lr))