如何重试失败的unkrshalling akka-http请求流?

时间:2016-03-31 16:07:02

标签: scala akka-stream akka-http akka-supervision

我知道可以通过ActorMaterialzer上的监督策略重新启动akka-stream错误

val decider: Supervision.Decider = {
  case _: ArithmeticException => Supervision.Resume
  case _                      => Supervision.Stop
}
implicit val materializer = ActorMaterializer(
  ActorMaterializerSettings(system).withSupervisionStrategy(decider))
val source = Source(0 to 5).map(100 / _)
val result = source.runWith(Sink.fold(0)(_ + _))
// the element causing division by zero will be dropped
// result here will be a Future completed with Success(228)

来源:http://doc.akka.io/docs/akka/2.4.2/scala/stream/stream-error.html

我有以下用例。

/***
scalaVersion := "2.11.8"

libraryDependencies ++= Seq(
  "com.typesafe.akka" %% "akka-http-experimental"            % "2.4.2",
  "com.typesafe.akka" %% "akka-http-spray-json-experimental" % "2.4.2"
)
*/

import akka.http.scaladsl.unmarshalling.Unmarshal
import akka.http.scaladsl.marshallers.sprayjson.SprayJsonSupport._
import spray.json._

import akka.http.scaladsl.Http
import akka.http.scaladsl.model._
import Uri.Query

import akka.actor.ActorSystem
import akka.stream.ActorMaterializer
import akka.stream.scaladsl._

import scala.util.{Success, Failure}
import scala.concurrent.Await
import scala.concurrent.duration.Duration
import scala.concurrent.Future

object SO extends DefaultJsonProtocol {

  implicit val system = ActorSystem()
  import system.dispatcher
  implicit val materializer = ActorMaterializer()

  val httpFlow = Http().cachedHostConnectionPoolHttps[HttpRequest]("example.org")

  def search(query: Char) = {
    val request = HttpRequest(uri = Uri("https://example.org").withQuery(Query("q" -> query.toString)))
    (request, request)
  }

  case class Hello(name: String)
  implicit val helloFormat = jsonFormat1(Hello)

  val searches =
    Source('a' to 'z').map(search).via(httpFlow).mapAsync(1){
      case (Success(response), _) => Unmarshal(response).to[Hello]
      case (Failure(e), _) => Future.failed(e)
    }

  def main(): Unit = {
    Await.result(searches.runForeach(_ => println), Duration.Inf)
    ()
  }
}

有时查询将无法解组。我想在该单个查询上使用重试策略 https://example.org/?q=v没有重新开始整个字母表。

2 个答案:

答案 0 :(得分:7)

我认为用超级策略实现它很难(或者不可能),主要是因为你想重试“n”次(根据评论中的讨论),我认为你不能追踪使用监督时元素被尝试的次数。

我认为有两种方法可以解决这个问题。将风险操作作为单独的流处理或创建图形,这将执行错误处理。我将提出两种解决方案。

另请注意Akka Streams distinguishes between errors and failures,所以如果你不能处理你的失败,他们最终会崩溃流程(如果没有策略被引入),所以在下面的例子中我将它们转换为Either ,代表成功或错误。

单独的流

您可以做的是将每个字母作为单独的流处理,并使用重试策略分别处理每个字母的失败,并有一些延迟。

// this comes after your helloFormat

// note that the method is somehow simpler because it's
// using implicit dispatcher and scheduler from outside scope,
// you may also want to pass it as implicit arguments
def retry[T](f: => Future[T], delay: FiniteDuration, c: Int): Future[T] =
  f.recoverWith {
    // you may want to only handle certain exceptions here...
    case ex: Exception if c > 0 =>
      println(s"failed - will retry ${c - 1} more times")
      akka.pattern.after(delay, system.scheduler)(retry(f, delay, c - 1))
  }

val singleElementFlow = httpFlow.mapAsync[Hello](1) {
  case (Success(response), _) =>
    val f = Unmarshal(response).to[Hello]
    f.recoverWith {
      case ex: Exception =>
        // see https://github.com/akka/akka/issues/20192
        response.entity.dataBytes.runWith(Sink.ignore).flatMap(_ => f)
    }
  case (Failure(e), _) => Future.failed(e)
}

// so the searches can either go ok or not, for each letter, we will retry up to 3 times
val searches =
  Source('a' to 'z').map(search).mapAsync[Either[Throwable, Hello]](1) { elem =>
    println(s"trying $elem")
    retry(
      Source.single(elem).via(singleElementFlow).runWith(Sink.head[Hello]),
      1.seconds, 3
    ).map(ok => Right(ok)).recover { case ex => Left(ex) }
  }
// end

图形

此方法将故障集成到图表中,并允许重试。这个例子使所有请求并行运行,并且更喜欢重试那些失败的请求,但是如果你不想要这种行为并逐一运行它们,那么你也可以相信这一点。

// this comes after your helloFormat

// you may need to have your own class if you
// want to propagate failures for example, but we will use
// right value to keep track of how many times we have
// tried the request
type ParseResult = Either[(HttpRequest, Int), Hello]

def search(query: Char): (HttpRequest, (HttpRequest, Int)) = {
  val request = HttpRequest(uri = Uri("https://example.org").withQuery(Query("q" -> query.toString)))
  (request, (request, 0)) // let's use this opaque value to count how many times we tried to search
}

val g = GraphDSL.create() { implicit b =>
  import GraphDSL.Implicits._

  val searches = b.add(Flow[Char])

  val tryParse =
    Flow[(Try[HttpResponse], (HttpRequest, Int))].mapAsync[ParseResult](1) {
      case (Success(response), (req, tries)) =>
        println(s"trying parse response to $req for $tries")
        Unmarshal(response).to[Hello].
          map(h => Right(h)).
          recoverWith {
            case ex: Exception =>
              // see https://github.com/akka/akka/issues/20192
              response.entity.dataBytes.runWith(Sink.ignore).map { _ =>
                Left((req, tries + 1))
              }
          }
      case (Failure(e), _) => Future.failed(e)
    }

  val broadcast = b.add(Broadcast[ParseResult](2))

  val nonErrors = b.add(Flow[ParseResult].collect {
    case Right(x) => x
    // you may also handle here Lefts which do exceeded retries count
  })

  val errors = Flow[ParseResult].collect {
    case Left(x) if x._2 < 3 => (x._1, x)
  }
  val merge = b.add(MergePreferred[(HttpRequest, (HttpRequest, Int))](1, eagerComplete = true))

  // @formatter:off
  searches.map(search) ~> merge ~> httpFlow ~> tryParse ~> broadcast ~> nonErrors
                          merge.preferred <~ errors <~ broadcast
  // @formatter:on

  FlowShape(searches.in, nonErrors.out)
}

def main(args: Array[String]): Unit = {
  val source = Source('a' to 'z')
  val sink = Sink.seq[Hello]

  source.via(g).toMat(sink)(Keep.right).run().onComplete {
    case Success(seq) =>
      println(seq)
    case Failure(ex) =>
      println(ex)
  }

}

基本上这里发生的是我们通过httpFlow运行搜索,然后尝试解析响应,我们 然后广播结果并分割错误和非错误,非错误转到接收器,并发送错误 回到循环。如果重试次数超过计数,我们会忽略该元素,但您也可以这样做 别的东西。

无论如何,我希望这会给你一些想法。

答案 1 :(得分:1)

对于上面的流解决方案,流中最后一个元素的任何重试都不会执行。这是因为当发送最后一个元素后上游完成时,合并也将完成。之后,唯一的输出来自非重试出口,但由于该元素也将重试,也将完成。

如果您需要所有输入元素来生成输出,则需要一个额外的机制来阻止上游完成到达进程和重试图。一种可能性是使用BidiFlow监视过程和重试图的输入和输出,以确保在传播完成之前已经生成了所有必需的输出(对于观察到的输入)。在简单的情况下,可以只计算输入和输出元素。