我正在处理spark数据帧,我需要按列进行分组,并将分组行的列值转换为元素数组作为新列。 示例:
Input:
employee | Address
------------------
Micheal | NY
Micheal | NJ
Output:
employee | Address
------------------
Micheal | (NY,NJ)
非常感谢任何帮助。!
答案 0 :(得分:5)
这是另一种解决方案
我已将数据框转换为rdd以进行转换,并使用sqlContext.createDataFrame()
将其转换回dataFrame
Sample.json
{"employee":"Michale","Address":"NY"}
{"employee":"Michale","Address":"NJ"}
{"employee":"Sam","Address":"NY"}
{"employee":"Max","Address":"NJ"}
Spark应用程序
val df = sqlContext.read.json("sample.json")
// Printing the original Df
df.show()
//Defining the Schema for the aggregated DataFrame
val dataSchema = new StructType(
Array(
StructField("employee", StringType, nullable = true),
StructField("Address", ArrayType(StringType, containsNull = true), nullable = true)
)
)
// Converting the df to rdd and performing the groupBy operation
val aggregatedRdd: RDD[Row] = df.rdd.groupBy(r =>
r.getAs[String]("employee")
).map(row =>
// Mapping the Grouped Values to a new Row Object
Row(row._1, row._2.map(_.getAs[String]("Address")).toArray)
)
// Creating a DataFrame from the aggregatedRdd with the defined Schema (dataSchema)
val aggregatedDf = sqlContext.createDataFrame(aggregatedRdd, dataSchema)
// Printing the aggregated Df
aggregatedDf.show()
输出:
+-------+--------+---+
|Address|employee|num|
+-------+--------+---+
| NY| Michale| 1|
| NJ| Michale| 2|
| NY| Sam| 3|
| NJ| Max| 4|
+-------+--------+---+
+--------+--------+
|employee| Address|
+--------+--------+
| Sam| [NY]|
| Michale|[NY, NJ]|
| Max| [NJ]|
+--------+--------+
答案 1 :(得分:4)
如果您使用的是 Spark 2.0 + ,则可以使用collect_list
或collect_set
。
您的查询类似于(假设您的数据框称为输入):
import org.apache.spark.sql.functions._
input.groupBy('employee).agg(collect_list('Address))
如果您对重复项没问题,请使用collect_list
。如果您对重复项不满意并且只需要列表中的唯一项,请使用collect_set
。
希望这有帮助!