与cusparse相比,cublas异常缓慢

时间:2016-03-31 10:51:25

标签: c++ cuda gpu cublas

我正在尝试运行一些测试来比较不同稀疏度下的cusparse和cublas性能(使用Titan X),这里的主要代码名为“testcusparsevector.cpp”:

#include <stdio.h>
#include <iostream>
#include <vector>
#include <cstdlib>
#include <fstream>
#include <time.h>
#include <cuda_runtime.h>
#include <cublas.h>
#include <cusparse_v2.h>
#include <cublas_v2.h>
#include <assert.h>
#define M 6
#define N 5
#define IDX2C(i,j,ld) (((j)*(ld))+(i))


// /home/gpu1/Install/OpenBLAS-0.2.14


#define CHECK_EQ(a,b) do { \
    if ((a) != (b)) { \
        cout <<__FILE__<<" : "<< __LINE__<<" : check failed because "<<a<<"!="<<b<<endl;\
        exit(1);\
    }\
} while(0)

#define CUBLAS_CHECK(condition) \
do {\
    cublasStatus_t status = condition; \
    CHECK_EQ(status, CUBLAS_STATUS_SUCCESS); \
} while(0)

#define CUSPARSE_CHECK(condition)\
do {\
    cusparseStatus_t status = condition; \
    switch(status)\
    {\
        case CUSPARSE_STATUS_NOT_INITIALIZED:\
            cout << "CUSPARSE_STATUS_NOT_INITIALIZED" << endl;\
            break;\
        case CUSPARSE_STATUS_ALLOC_FAILED:\
            cout << "CUSPARSE_STATUS_ALLOC_FAILED" << endl;\
            break;\
        case CUSPARSE_STATUS_INVALID_VALUE:\
            cout << "CUSPARSE_STATUS_INVALID_VALUE" << endl;\
            break;\
        case CUSPARSE_STATUS_ARCH_MISMATCH:\
            cout << "CUSPARSE_STATUS_ARCH_MISMATCH" << endl;\
            break;\
        case CUSPARSE_STATUS_MAPPING_ERROR:\
            cout << "CUSPARSE_STATUS_MAPPING_ERROR" << endl;\
            break;\
            case CUSPARSE_STATUS_EXECUTION_FAILED:\
            cout << "CUSPARSE_STATUS_EXECUTION_FAILED" << endl;\
            break;\
        case CUSPARSE_STATUS_INTERNAL_ERROR:\
            cout << "CUSPARSE_STATUS_INTERNAL_ERROR" << endl;\
            break;\
        case CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED:\
            cout << "CUSPARSE_STATUS_MATRIX_TYPE_NOT_SUPPORTED" << endl;\
            break;\
        case CUSPARSE_STATUS_ZERO_PIVOT:\
            cout << "CUSPARSE_STATUS_ZERO_PIVOT" << endl;\
    }\
    CHECK_EQ(status, CUSPARSE_STATUS_SUCCESS); \
} while(0)

#define CUDA_CHECK(condition)\
do {\
    cudaError_t error = condition;\
    CHECK_EQ(error, cudaSuccess);\
} while(0)

//check after kernel function
#define CUDA_POST_KERNEL_CHECK CUDA_CHECK(cudaPeekAtLastError())



#define __TIMING__ 1

#if __TIMING__


#define INIT_TIMER  cudaEvent_t start, stop; \
    float milliseconds = 0; \
    float sum = 0;\
    cudaEventCreate( &start );\
    cudaEventCreate( &stop );

#define TIC {  cudaEventRecord( start ); }

#if __CUDNN__
    #define PREDEFNAME "CUDNN"
#else
    #define PREDEFNAME "CUDA"
#endif

#define TOC(a) { cudaEventRecord( stop ); \
        cudaEventSynchronize( stop ); \
        cudaEventElapsedTime( &milliseconds, start, stop );  \
        printf( "GPU Execution time of %s_%s: %f ms\n",PREDEFNAME, a, milliseconds ); \
        sum += milliseconds;\
        fflush(stdout); }

#define CLOSE_TIMER {cudaEventDestroy(start); cudaEventDestroy(stop); }
#endif

using namespace std;

void dispArray(double* array, size_t width, size_t height) {
    for (int i=0; i < height;i++ ) {
        for (int j=0;j < width;j++) {
            cout << array[j*height+i] << ' ';
        }
        cout << endl;
    }
    cout << endl;
}

int main()
{
    srand(time(NULL));
    const int num_loop = 1;
    const int inside_loop = 1000;
    // const int WIDTH = 512*3*3;
    // const int HEIGHT = 512;
    // const int WIDTHOUT = 36;
    const int WIDTH = 4608;
    const int HEIGHT = 512;
    const int WIDTHOUT = 144;
    // const int WIDTH = 18500;
    // const int HEIGHT = 512;
    // const int WIDTHOUT = 1;
    // const int WIDTH = 3;
    // const int HEIGHT = 5;
    // const int WIDTHOUT = 2;
    INIT_TIMER
    ofstream myfile;
    myfile.open("test_sparsity.log");

    cudaError_t cudaStat;    
    cusparseStatus_t stat;
    cusparseHandle_t handle;
    cublasHandle_t handleblas;

    double *devPtrOutput;
    double *devPtrOutput2;
    double *devPtrRand;
    double *devPtrSec;
    CUDA_CHECK(cudaMalloc((void **)&(devPtrOutput), sizeof(double)*HEIGHT*WIDTHOUT));
    CUDA_CHECK(cudaMalloc((void **)&(devPtrOutput2), sizeof(double)*HEIGHT*WIDTHOUT));

    CUDA_CHECK(cudaMalloc((void **)&(devPtrRand), sizeof(double)*WIDTH*WIDTHOUT));
    CUDA_CHECK(cudaMalloc((void **)&(devPtrSec), sizeof(double)*WIDTH*HEIGHT));
    const double alpha=1.0;
    const double beta=0.0;
    double *csrVal;
    int *csrRowPtr;
    int *csrColInd;

    const bool SPARSE = true;
    long a = clock();
    long temp = clock();
    cusparseMatDescr_t descr;
    CUSPARSE_CHECK(cusparseCreateMatDescr(&descr));
    cusparseSetMatType(descr, CUSPARSE_MATRIX_TYPE_GENERAL);
    cusparseSetMatIndexBase(descr, CUSPARSE_INDEX_BASE_ZERO);
    int nnz;
    CUSPARSE_CHECK(cusparseCreate(&handle));
    CUBLAS_CHECK(cublasCreate(&handleblas));
    int *nnzPerRow_gpu;
    CUDA_CHECK(cudaMalloc((void **)&(nnzPerRow_gpu), sizeof(int)*HEIGHT));
    CUDA_CHECK(cudaMalloc((void **)&(csrRowPtr), sizeof(int)*(HEIGHT+1)));
    double density_array[1] = {0.9999};//, 0.8, 0.7, 0.6, 0.5,      0.4, 0.3, 0.2, 0.1 ,0.09,     0.08, 0.07, 0.06, 0.05 ,0.04,     0.03, 0.02, 0.01};
    for (int inddense=0;inddense < 1;inddense++) {
        double DENSITY = density_array[inddense];
        int num_non_zeros = DENSITY * (WIDTH * HEIGHT);

        CUDA_CHECK(cudaMalloc((void **)&(csrColInd), sizeof(int)*num_non_zeros));
        CUDA_CHECK(cudaMalloc((void **)&(csrVal), sizeof(double)*num_non_zeros));
        INIT_TIMER
        for (int iter=0; iter < num_loop;iter++) {
            vector<double> randVec(WIDTH*WIDTHOUT, 0);
            vector<double> secArray(WIDTH*HEIGHT, 0);
            vector<int> temp(WIDTH*HEIGHT, 1);

            for (int j = 0; j < WIDTH*WIDTHOUT; j++) {
                randVec[j]=(double)(rand()%100000)/100;
            }

            for (int x, i = 0; i < num_non_zeros;i++) {
                do
                {
                    x = rand() % (WIDTH*HEIGHT);
                } while(temp[x] == 0);
                temp[x]=0;
                secArray[x]=(double)(rand()%100000)/100;
            }
            int count = 0;
            for(int i=0;i < WIDTH*HEIGHT;i++) {
                if (secArray[i] != 0) {
                    count++;
                }
            }

            // randVec = {2,2,2,3,3,3};
            // secArray = {0,5,0,2,5,8,7,0,0,0,0,2,0,4,4};
            CUDA_CHECK(cudaMemcpy(devPtrRand, &randVec[0], sizeof(double)*WIDTH*WIDTHOUT, cudaMemcpyHostToDevice));
            CUDA_CHECK(cudaMemcpy(devPtrSec, &secArray[0], sizeof(double)*WIDTH*HEIGHT, cudaMemcpyHostToDevice));


            if (SPARSE) {
                CUSPARSE_CHECK(cusparseDnnz(handle, CUSPARSE_DIRECTION_ROW, HEIGHT, WIDTH, descr, devPtrSec, HEIGHT, nnzPerRow_gpu, &nnz));
                CUSPARSE_CHECK(cusparseDdense2csr(handle, HEIGHT, WIDTH, descr,devPtrSec,HEIGHT,nnzPerRow_gpu,csrVal,csrRowPtr,csrColInd));
            }       
            // vector<double> tempcsrVal(nnz,0);
            // vector<int> tempcsrRowPtr(HEIGHT+1);
            // vector<int> tempcsrColInd(nnz,0);
            // CUDA_CHECK(cudaMemcpy(&tempcsrVal[0], csrVal, sizeof(double)*nnz, cudaMemcpyDeviceToHost));
            // CUDA_CHECK(cudaMemcpy(&tempcsrRowPtr[0], csrRowPtr, sizeof(int)*(HEIGHT+1), cudaMemcpyDeviceToHost));
            // CUDA_CHECK(cudaMemcpy(&tempcsrColInd[0], csrColInd, sizeof(int)*nnz, cudaMemcpyDeviceToHost));
            // for (int i =0; i < nnz;i++) {
                // cout << tempcsrVal[i] << " ";
            // }
            // cout << endl;
            // for (int i =0; i < HEIGHT+1;i++) {
                // cout << tempcsrRowPtr[i] << " ";
            // }
            // cout << endl;
            // for (int i =0; i < nnz;i++) {
                // cout << tempcsrColInd[i] << " ";
            // }
            // cout << endl;
            cudaDeviceSynchronize();
            TIC
            for (int i=0 ; i < inside_loop;i++) {
                if (WIDTHOUT == 1) {
                    // TIC
                    CUSPARSE_CHECK(cusparseDcsrmv(handle, CUSPARSE_OPERATION_NON_TRANSPOSE,
                    HEIGHT, WIDTH, nnz, &alpha, descr, csrVal, csrRowPtr, csrColInd, 
                    devPtrRand, &beta, devPtrOutput));
                    // TOC("csrmv")
                } else {
                    // TIC
                    CUSPARSE_CHECK(cusparseDcsrmm(handle, CUSPARSE_OPERATION_NON_TRANSPOSE, 
                        HEIGHT, WIDTHOUT, WIDTH, nnz, &alpha, descr, csrVal, csrRowPtr, 
                        csrColInd, devPtrRand, WIDTH, &beta, devPtrOutput, HEIGHT));
                    // TOC("csrmm")
                }
            }
            TOC("csr")
            TIC
            for (int i=0 ; i < inside_loop;i++) {
                if (WIDTHOUT == 1) {
                    // TIC
                    CUBLAS_CHECK(cublasDgemv(handleblas, CUBLAS_OP_N, HEIGHT, WIDTH, &alpha, devPtrSec, HEIGHT , devPtrRand, 1, &beta, devPtrOutput2, 1));
                    // TOC("dgemv")
                } else {
                    // TIC
                    CUBLAS_CHECK(cublasDgemm(handleblas, CUBLAS_OP_N, CUBLAS_OP_N, HEIGHT, WIDTHOUT, WIDTH, &alpha, devPtrSec, HEIGHT, devPtrRand, WIDTH, &beta, devPtrOutput2, HEIGHT));
                    // TOC("dgemm")
                }
            }
            TOC("blas")


            #if 0
            vector<double> output(HEIGHT*WIDTHOUT, 0);
            vector<double> output2(HEIGHT*WIDTHOUT, 0);
            CUDA_CHECK(cudaMemcpy(&output[0], devPtrOutput, sizeof(double)*HEIGHT*WIDTHOUT, cudaMemcpyDeviceToHost));
            CUDA_CHECK(cudaMemcpy(&output2[0], devPtrOutput2, sizeof(double)*HEIGHT*WIDTHOUT, cudaMemcpyDeviceToHost));
            dispArray(&output[0], WIDTHOUT, HEIGHT);
            cout << endl;
            for (int i=0;i < WIDTHOUT * HEIGHT;i++) {
                if (output[i] != output2[i]) {
                    cout << "error: " << i << " " << (output[i] - output2[i]) << " " << output[i] << endl;
                }
            }
            #endif

        }

        cout << DENSITY << " " << sum/num_loop << endl;
        myfile << DENSITY << " " << sum/num_loop << endl;
        cudaFree(csrColInd);
        cudaFree(csrVal);
    }
    myfile.close();
    cudaFree(csrRowPtr);
    cudaFree(devPtrOutput);
    cudaFree(devPtrRand);
    cudaFree(devPtrSec);

}

然而,在用

编译代码之后
g++ -std=c++1y -O3 -I/usr/local/cuda/include -o testcusparsevector testcusparsevector.cpp -L/usr/local/cuda/lib64 -lcudart -lcublas -lcusparse

这是输出:

GPU Execution time of CUDA_csr: 4818.447266 ms
GPU Execution time of CUDA_blas: 5024.459961 ms

这应该意味着即使我的密度为0.999,cusparseDcsrmm仍然比cublasDgemm快,我已经检查了结果是好的,并且与其他例子相比,似乎问题来自Cublas,这也是慢。

你知道它来自哪里吗?

编辑:我试图将值更改为浮点数,结果更多的是我正在寻找的,显然,cublas不是用于双重计算...

先谢谢。

1 个答案:

答案 0 :(得分:3)

Titan X(以及maxwell GPU系列的所有当前成员)具有双精度浮点运算和1:32单精度浮点运算之间的吞吐量比率。

通常,稀疏矩阵运算是内存带宽约束,而密集矩阵 - 矩阵乘法则是计算约束问题的一个例子。

因此,在您的示例中,您正在处理通常受计算限制的问题,并将其作为稀疏矩阵运行在具有相对大的内存带宽的处理器上,并且相对较少的双精度计算吞吐量。

这种情况可能会导致两个API之间的界限变得模糊,而CUBLAS API通常可以更快地进行此比较。

如果您将代码切换为使用float而不是double,我认为您已尝试过,那么您将再次看到CUBLAS获胜。同样,如果您在GPU上按原样运行代码,而单精度和双精度吞吐量之间的比率不同,那么您也会看到CUBLAS再次获胜。

  显然,古巴拉斯不是为了双重计算而制造的......

而不是说,我会说GTX Titan X不是(主要)用于双重计算。尝试使用特斯拉K80,K40或其他具有更高的双倍吞吐量比率的GPU。

以下是在“未启动的”特斯拉K40上运行的程序输出:

$ ./testcusparsevector
GPU Execution time of CUDA_csr: 8870.386719 ms
GPU Execution time of CUDA_blas: 1045.211792 ms

免责声明:我没有尝试过研究您的代码。我看了一眼,没有明显的问题突然出现在我面前。但是可能会有一些我没有发现的问题。