我有一个小型数据集,它将是Spark作业的结果。我正在考虑在作业结束时将此数据集转换为数据框以方便,但却难以正确定义架构。问题是下面的最后一个字段(topValues
);它是元组的ArrayBuffer - 键和计数。
val innerSchema =
StructType(
Array(
StructField("value", StringType),
StructField("count", LongType)
)
)
val outputSchema =
StructType(
Array(
StructField("name", StringType, nullable=false),
StructField("index", IntegerType, nullable=false),
StructField("count", LongType, nullable=false),
StructField("empties", LongType, nullable=false),
StructField("nulls", LongType, nullable=false),
StructField("uniqueValues", LongType, nullable=false),
StructField("mean", DoubleType),
StructField("min", DoubleType),
StructField("max", DoubleType),
StructField("topValues", innerSchema)
)
)
val result = stats.columnStats.map{ c =>
Row(c._2.name, c._1, c._2.count, c._2.empties, c._2.nulls, c._2.uniqueValues, c._2.mean, c._2.min, c._2.max, c._2.topValues.topN)
}
val rdd = sc.parallelize(result.toSeq)
val outputDf = sqlContext.createDataFrame(rdd, outputSchema)
outputDf.show()
我得到的错误是MatchError:scala.MatchError: ArrayBuffer((10,2), (20,3), (8,1)) (of class scala.collection.mutable.ArrayBuffer)
当我调试和检查我的对象时,我看到了:
rdd: ParallelCollectionRDD[2]
rdd.data: "ArrayBuffer" size = 2
rdd.data(0): [age,2,6,0,0,3,14.666666666666666,8.0,20.0,ArrayBuffer((10,2), (20,3), (8,1))]
rdd.data(1): [gender,3,6,0,0,2,0.0,0.0,0.0,ArrayBuffer((M,4), (F,2))]
在我看来,我已经准确地在我的innerSchema中描述了元组的ArrayBuffer,但Spark不同意。
知道我应该如何定义架构吗?
答案 0 :(得分:14)
val rdd = sc.parallelize(Array(Row(ArrayBuffer(1,2,3,4))))
val df = sqlContext.createDataFrame(
rdd,
StructType(Seq(StructField("arr", ArrayType(IntegerType, false), false)
)
df.printSchema
root
|-- arr: array (nullable = false)
| |-- element: integer (containsNull = false)
df.show
+------------+
| arr|
+------------+
|[1, 2, 3, 4]|
+------------+
答案 1 :(得分:6)
正如David指出的那样,我需要使用ArrayType。 Spark很满意:
val outputSchema =
StructType(
Array(
StructField("name", StringType, nullable=false),
StructField("index", IntegerType, nullable=false),
StructField("count", LongType, nullable=false),
StructField("empties", LongType, nullable=false),
StructField("nulls", LongType, nullable=false),
StructField("uniqueValues", LongType, nullable=false),
StructField("mean", DoubleType),
StructField("min", DoubleType),
StructField("max", DoubleType),
StructField("topValues", ArrayType(StructType(Array(
StructField("value", StringType),
StructField("count", LongType)
))))
)
)
答案 2 :(得分:2)
import spark.implicits._
import org.apache.spark.sql.types._
import org.apache.spark.sql.functions._
val searchPath = "/path/to/.csv"
val columns = "col1,col2,col3,col4,col5,col6,col7"
val fields = columns.split(",").map(fieldName => StructField(fieldName, StringType,
nullable = true))
val customSchema = StructType(fields)
var dfPivot =spark.read.format("com.databricks.spark.csv").option("header","false").option("inferSchema", "false").schema(customSchema).load(searchPath)
与使用默认架构加载数据相比,使用自定义架构加载数据要快得多