我正在使用“sklearn.svm”进行基本的SVM培训。对于SVC,有没有办法打印出文档中描述的模型细节:
from sklearn.svm import SVC
clf = SVC(C=10.0,kernel='linear',probability=True,verbose=True)
clf.fit(X, y_)
注意:我不是在讨论“get_params”或“set_params”可以达到的参数。我指的是作为算法结果确定的实际系数。
答案 0 :(得分:1)
来自SVC的文档:
Attributes:
support_ : array-like, shape = [n_SV]
Indices of support vectors.
support_vectors_ : array-like, shape = [n_SV, n_features]
Support vectors.
n_support_ : array-like, dtype=int32, shape = [n_class]
Number of support vectors for each class.
dual_coef_ : array, shape = [n_class-1, n_SV]
Coefficients of the support vector in the decision function. For
multiclass, coefficient for all 1-vs-1 classifiers. The layout of
the coefficients in the multiclass case is somewhat non-trivial.
See the section about multi-class classification in the SVM
section of the User Guide for details.
coef_ : array, shape = [n_class-1, n_features]
Weights assigned to the features (coefficients in the primal
problem). This is only available in the case of a linear
kernel.
coef_ is a readonly property derived from dual_coef_ and
support_vectors_.
intercept_ : array, shape = [n_class * (n_class-1) / 2]
Constants in decision function.
您可以从此属性中获取有关模型的所有信息。
例如:clf.n_support_
将返回您模型的n_support_
。