如何在支持向量机(SVM)训练后提取完整的模型信息?

时间:2016-03-30 15:24:02

标签: scikit-learn svm

我正在使用“sklearn.svm”进行基本的SVM培训。对于SVC,有没有办法打印出文档中描述的模型细节:

enter image description here

from sklearn.svm import SVC
clf = SVC(C=10.0,kernel='linear',probability=True,verbose=True)
clf.fit(X, y_)

注意:我不是在讨论“get_params”或“set_params”可以达到的参数。我指的是作为算法结果确定的实际系数。

1 个答案:

答案 0 :(得分:1)

来自SVC的文档:

Attributes: 

support_ : array-like, shape = [n_SV]
    Indices of support vectors.
    support_vectors_ : array-like, shape = [n_SV, n_features]
    Support vectors.

n_support_ : array-like, dtype=int32, shape = [n_class]
    Number of support vectors for each class.

dual_coef_ : array, shape = [n_class-1, n_SV]
    Coefficients of the support vector in the decision function. For       
    multiclass, coefficient for all 1-vs-1 classifiers. The layout of   
    the coefficients in the multiclass case is somewhat non-trivial. 
    See the section about multi-class classification in the SVM 
     section of the User Guide for details.

coef_ : array, shape = [n_class-1, n_features]

      Weights assigned to the features (coefficients in the primal  
      problem). This is only available in the case of a linear 
      kernel.

      coef_ is a readonly property derived from dual_coef_ and  
      support_vectors_.

intercept_ : array, shape = [n_class * (n_class-1) / 2]
      Constants in decision function.

您可以从此属性中获取有关模型的所有信息。

例如:clf.n_support_将返回您模型的n_support_