使用R(MICE) - 缺少系数

时间:2016-03-29 15:17:18

标签: r logistic-regression pooling r-mice

我在R中使用MICE包时出现问题,特别是汇集了推算数据集。

我正在运行多级二项式逻辑回归,其中Level1 - 主题(参与者对不同主题的10个问题的响应,例如Darkness,Day)嵌套在Level2 - 个体中。

使用R2MLwiN创建模型,公式为 > fit1 <-runMLwiN( c(probit(T_Darkness, cons), probit(T_Day, cons), probit(T_Light, cons), probit(T_Night, cons), probit(T_Rain, cons), probit(T_Rainbows, cons), probit(T_Snow, cons), probit(T_Storms, cons), probit(T_Waterfalls, cons), probit(T_Waves, cons)) ~ 1, D=c("Mixed", "Binomial", "Binomial","Binomial","Binomial", "Binomial", "Binomial", "Binomial", "Binomial", "Binomial" ,"Binomial"), estoptions = list(EstM = 0), data=data)

不幸的是,所有Level1(主题)响应中都缺少数据。 我一直在使用mice包([CRAN] [1])来乘以错误的值。

我可以使用公式> fitMI <- (with(MI.Data, runMLwiN( c(probit(T_Darkness, cons), probit(T_Day, cons), probit(T_Light, cons), probit(T_Night, cons), probit(T_Rain, cons), probit(T_Rainbows, cons), probit(T_Snow, cons), probit(T_Storms, cons), probit(T_Waterfalls, cons), probit(T_Waves, cons)) ~ 1, D=c("Mixed", "Binomial", "Binomial","Binomial","Binomial", "Binomial", "Binomial", "Binomial", "Binomial", "Binomial" ,"Binomial"), estoptions = list(EstM = 0), data=data)))

将模型拟合到插补数据集

但是,当我使用调用代码> pool(fitMI)汇总分析时,它会失败,并显示错误:

Error in pool(with(tempData, runMLwiN(c(probit(T_Darkness, cons), probit(T_Day, : Object has no coef() method.

我不确定为什么它说没有系数,因为对各个MI数据集的分析提供了固定部分(系数)和随机部分(协方差)

对于出现问题的任何帮助都将非常感激。

我应该警告你,这是我第一次尝试使用R和多级建模。 另外我知道有一个MlwiN软件包([REALCOM] [2])可以做到这一点,但我没有使用MLwiN软件的背景。

感谢 约翰尼

更新 - R可重复的示例

使用的库

  

库(R2MLwiN)

     

库(小鼠)

数据子集 `

  

T_Darkness&lt; - c(0,1,0,0,0,0,0,1,0,0,NA,0,0,0,NA,1,0,NA,NA,1,0 ,0,0,1,0,0,0,NA,0,0,0,NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,0,1,NA,0,0,1,0,1,0,0,0,0,0,NA,1,0)

     

T_Day&lt; - c(0,0,0,1,0,0,1,0,0,0,0,0,0,0,0,0,0,NA,0,0,0 ,NA,0,0,0,0,0,0,0,0,0,1,0,1,0,0,0,1,1,0,0,NA,0,0,0 ,0,NA,0,0,1,0,0,0,0,0,0,0,0,1,0,0,NA,NA,0)

     

T_Light&lt; - c(0,0,NA,0,1,0,1,0,0,0,0,0,1,0,1,1,0,0,0,1,0 ,0,0,1,0,0,NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,0,0,1,NA,1,0,0,0,0,0,0,0,0,0,0,NA,0,0)

     

T_Night&lt; - c(0,0,0,0,0,1,0,0,0,1,0,0,0,0,1,0,0,1,0,0,0 ,0,NA,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 ,0,0,NA,0,NA,0,0,1,0,0,0,0,0,0,0,0,0,NA,0,0)

     

T_Rain&lt; - c(1,0,0,1,1,0,0,NA,0,1,0,0,1,0,0,0,0,NA,0,0,1 ,0,0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,NA,0,0,0,0,1,0 ,0,0,NA,1,NA,0,0,0,0,1,NA,1,0,0,0,0,1,NA,0,0)

     

T_Rainbows&lt; - c(1,1,1,1,0,1,0,1,0,1,NA,1,1,0,0,1,0,NA,0,1,0) ,NA,0,1,0,0,0,0,0,NA,0,0,0,NA,1,1,1,0,0,1,1,0,0,0,0,0 ,1,0,1,1,1,1,NA,1,0,1,NA,0,0,1,0,1,1,1,0,1)

     

T_Snow&lt; - c(0,0,1,0,0,0,1,1,0,1,0,NA,0,0,1,0,0,0,0,0,0 ,0,0,1,1,0,0,0,NA,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0 ,0,0,NA,0,0,1,NA,1,0,1,1,0,0,0,0,0,NA,0,0,0)

     

T_Storms&lt; - c(0,0,0,1,1,1,0,1,0,1,NA,0,0,0,0,1,0,NA,0,0,1 ,0,0,NA,1,1,NA,0,0,NA,0,1,0,NA,1,0,1,0,0,0,0,0,0,0,0,0 ,1,0,0,0,1,0,NA,1,0,NA,0,0,0,1,1,0,1,NA,NA,1)

     

T_Waterfalls&lt; - c(0,0,0,0,0,0,0,NA,0,0,0,0,0,0,0,NA,0,0,0,0,1 ,0,0,0,0,0,0,0,NA,0,0,0,0,0,1,0,0,0,1,0,0,NA,0,0,0 ,0,0,NA,0,1,0,NA,1,0,1,0,0,0,NA,0,0,0,NA,NA,0)

     

T_Waves&lt; - c(0,1,0,1,1,0,1,NA,0,0,NA,0,0,0,NA,1,0,0,0,0,1 ,0,NA,0,NA,0,0,NA,0,0,0,0,0,NA,1,0,0,0,0,0,0,NA,0,1,0 ,0,0,0,0,1,1,NA,1,1,NA,0,0,0,NA,0,0,0,NA,0,0)

     

数据&lt; - data.frame(T_Darkness,T_Day,T_Light,T_Night,T_Rain,T_Rainbows,T_Snow,T_Storms,T_Waterfalls,T_Waves)

     

数据$ cons&lt; - 1

`

使用

鼠标估算数据
  

MI.Data&lt; - mice(data,m = 5,maxit = 50,meth ='pmm',seed = 500)

1 个答案:

答案 0 :(得分:0)

这似乎是由于R2MLwiN中的某些模型提取方法未正确找到,应该已在最近发布的0.8-2版本的软件包中修复。用这个运行你的例子给我以下结果:

> pool(fitMI)
Call: pool(object = fitMI)

Pooled coefficients:
  FP_Intercept_T_Darkness        FP_Intercept_T_Day      FP_Intercept_T_Light      FP_Intercept_T_Night       FP_Intercept_T_Rain 
            -0.9687210917             -1.0720602274             -0.9584792256             -1.1816471815             -0.7082406878 
  FP_Intercept_T_Rainbows       FP_Intercept_T_Snow     FP_Intercept_T_Storms FP_Intercept_T_Waterfalls      FP_Intercept_T_Waves 
            -0.0455361903             -0.7537600398             -0.3883027434             -1.2365225554             -0.6423609257 
          RP1_var_bcons_1   RP1_cov_bcons_1_bcons_2           RP1_var_bcons_2   RP1_cov_bcons_1_bcons_3   RP1_cov_bcons_2_bcons_3 
             1.0000000000              0.0508168936              1.0000000000              0.2744663656              0.1625871509 
          RP1_var_bcons_3   RP1_cov_bcons_1_bcons_4   RP1_cov_bcons_2_bcons_4   RP1_cov_bcons_3_bcons_4           RP1_var_bcons_4 
             1.0000000000              0.0013987361              0.0576194786              0.0201622359              1.0000000000 
  RP1_cov_bcons_1_bcons_5   RP1_cov_bcons_2_bcons_5   RP1_cov_bcons_3_bcons_5   RP1_cov_bcons_4_bcons_5           RP1_var_bcons_5 
            -0.0220604800              0.1620389074              0.0956511647             -0.0242812764              1.0000000000 
  RP1_cov_bcons_1_bcons_6   RP1_cov_bcons_2_bcons_6   RP1_cov_bcons_3_bcons_6   RP1_cov_bcons_4_bcons_6   RP1_cov_bcons_5_bcons_6 
             0.2644620836              0.0555731133              0.1911445856              0.2584619522              0.1523280591 
          RP1_var_bcons_6   RP1_cov_bcons_1_bcons_7   RP1_cov_bcons_2_bcons_7   RP1_cov_bcons_3_bcons_7   RP1_cov_bcons_4_bcons_7 
             1.0000000000              0.1877118051              0.0872156173              0.2800109982              0.1433261335 
  RP1_cov_bcons_5_bcons_7   RP1_cov_bcons_6_bcons_7           RP1_var_bcons_7   RP1_cov_bcons_1_bcons_8   RP1_cov_bcons_2_bcons_8 
            -0.0006230903              0.1582182944              1.0000000000             -0.0749104023              0.1435756236 
  RP1_cov_bcons_3_bcons_8   RP1_cov_bcons_4_bcons_8   RP1_cov_bcons_5_bcons_8   RP1_cov_bcons_6_bcons_8   RP1_cov_bcons_7_bcons_8 
             0.0537744537              0.2291038185              0.2553031743              0.2716509402              0.1914017051 
          RP1_var_bcons_8   RP1_cov_bcons_1_bcons_9   RP1_cov_bcons_2_bcons_9   RP1_cov_bcons_3_bcons_9   RP1_cov_bcons_4_bcons_9 
             1.0000000000              0.1936145425              0.2835071683              0.0144172618              0.3326070011 
  RP1_cov_bcons_5_bcons_9   RP1_cov_bcons_6_bcons_9   RP1_cov_bcons_7_bcons_9   RP1_cov_bcons_8_bcons_9           RP1_var_bcons_9 
             0.1372590512              0.2854030728              0.0750594735              0.2545967996              1.0000000000 
 RP1_cov_bcons_1_bcons_10  RP1_cov_bcons_2_bcons_10  RP1_cov_bcons_3_bcons_10  RP1_cov_bcons_4_bcons_10  RP1_cov_bcons_5_bcons_10 
             0.3137466609              0.3498021364              0.2846792042              0.1126367375              0.2416045219 
 RP1_cov_bcons_6_bcons_10  RP1_cov_bcons_7_bcons_10  RP1_cov_bcons_8_bcons_10  RP1_cov_bcons_9_bcons_10          RP1_var_bcons_10 
             0.2137401104              0.1849118918              0.2134640366              0.6101759672              1.0000000000 

Fraction of information about the coefficients missing due to nonresponse: 
  FP_Intercept_T_Darkness        FP_Intercept_T_Day      FP_Intercept_T_Light      FP_Intercept_T_Night       FP_Intercept_T_Rain 
                0.5714367                 0.5714367                 0.5714367                 0.5714367                 0.5714367 
  FP_Intercept_T_Rainbows       FP_Intercept_T_Snow     FP_Intercept_T_Storms FP_Intercept_T_Waterfalls      FP_Intercept_T_Waves 
                0.5714367                 0.5714367                 0.5714367                 0.5714367                 0.5714367 
          RP1_var_bcons_1   RP1_cov_bcons_1_bcons_2           RP1_var_bcons_2   RP1_cov_bcons_1_bcons_3   RP1_cov_bcons_2_bcons_3 
                0.5714367                 0.5714367                 0.5714367                 0.5714367                 0.5714367 
          RP1_var_bcons_3   RP1_cov_bcons_1_bcons_4   RP1_cov_bcons_2_bcons_4   RP1_cov_bcons_3_bcons_4           RP1_var_bcons_4 
                0.5714367                 0.5714367                 0.5714367                 0.5714367                 0.5714367 
  RP1_cov_bcons_1_bcons_5   RP1_cov_bcons_2_bcons_5   RP1_cov_bcons_3_bcons_5   RP1_cov_bcons_4_bcons_5           RP1_var_bcons_5 
                0.5714367                 0.5714367                 0.5714367                 0.5714367                 0.5714367 
  RP1_cov_bcons_1_bcons_6   RP1_cov_bcons_2_bcons_6   RP1_cov_bcons_3_bcons_6   RP1_cov_bcons_4_bcons_6   RP1_cov_bcons_5_bcons_6 
                0.5714367                 0.5714367                 0.5714367                 0.5714367                 0.5714367 
          RP1_var_bcons_6   RP1_cov_bcons_1_bcons_7   RP1_cov_bcons_2_bcons_7   RP1_cov_bcons_3_bcons_7   RP1_cov_bcons_4_bcons_7 
                0.5714367                 0.5714367                 0.5714367                 0.5714367                 0.5714367 
  RP1_cov_bcons_5_bcons_7   RP1_cov_bcons_6_bcons_7           RP1_var_bcons_7   RP1_cov_bcons_1_bcons_8   RP1_cov_bcons_2_bcons_8 
                0.5714367                 0.5714367                 0.5714367                 0.5714367                 0.5714367 
  RP1_cov_bcons_3_bcons_8   RP1_cov_bcons_4_bcons_8   RP1_cov_bcons_5_bcons_8   RP1_cov_bcons_6_bcons_8   RP1_cov_bcons_7_bcons_8 
                0.5714367                 0.5714367                 0.5714367                 0.5714367                 0.5714367 
          RP1_var_bcons_8   RP1_cov_bcons_1_bcons_9   RP1_cov_bcons_2_bcons_9   RP1_cov_bcons_3_bcons_9   RP1_cov_bcons_4_bcons_9 
                0.5714367                 0.5714367                 0.5714367                 0.5714367                 0.5714367 
  RP1_cov_bcons_5_bcons_9   RP1_cov_bcons_6_bcons_9   RP1_cov_bcons_7_bcons_9   RP1_cov_bcons_8_bcons_9           RP1_var_bcons_9 
                0.5714367                 0.5714367                 0.5714367                 0.5714367                 0.5714367 
 RP1_cov_bcons_1_bcons_10  RP1_cov_bcons_2_bcons_10  RP1_cov_bcons_3_bcons_10  RP1_cov_bcons_4_bcons_10  RP1_cov_bcons_5_bcons_10 
                0.5714367                 0.5714367                 0.5714367                 0.5714367                 0.5714367 
 RP1_cov_bcons_6_bcons_10  RP1_cov_bcons_7_bcons_10  RP1_cov_bcons_8_bcons_10  RP1_cov_bcons_9_bcons_10          RP1_var_bcons_10 
                0.5714367                 0.5714367                 0.5714367                 0.5714367                 0.5714367