现在tensorflow中的最大池函数是
tf.nn.max_pool(value, ksize, strides, padding, name=None) Returns: A Tensor with type tf.float32. The max pooled output tensor.
我想有一个扩展版本的max_pool,比如
tf.nn.top_k_pool(value, ksize, strides, padding, k=1, name=None) Performs the top k pooling on the input. Args: value: A 4-D Tensor with shape [batch, height, width, channels] and type tf.float32. ksize: A list of ints that has length >= 4. The size of the window for each dimension of the input tensor. strides: A list of ints that has length >= 4. The stride of the sliding window for each dimension of the input tensor. padding: A string, either 'VALID' or 'SAME'. The padding algorithm. k: 0-D int32 Tensor. Number of top elements to look in each pool. name: Optional name for the operation. Returns: A Tensor with type tf.float32. The max pooled output tensor. There will be an additional dimension saving the top k values.
我知道我可以在https://www.tensorflow.org/versions/r0.7/how_tos/adding_an_op/index.html
之后花费张量流操作我想知道是否有更简单的方法来实现这一目标。
答案 0 :(得分:4)
这是使用top_k
获取通道的最大k次激活的功能。您可以修改它以符合您的目的:
def make_sparse_layer(inp_x,k, batch_size=None):
in_shape = tf.shape(inp_x)
d = inp_x.get_shape().as_list()[-1]
matrix_in = tf.reshape(inp_x, [-1,d])
values, indices = tf.nn.top_k(matrix_in, k=k, sorted=False)
out = []
vals = tf.unpack(values, axis=0, num=batch_size)
inds = tf.unpack(indices, axis=0, num=batch_size)
for i, idx in enumerate(inds):
out.append(tf.sparse_tensor_to_dense(tf.SparseTensor(tf.reshape(tf.cast(idx,tf.int64),[-1,1]),vals[i], [d]), validate_indices=False ))
shaped_out = tf.reshape(tf.pack(out), in_shape)
return shaped_out
答案 1 :(得分:1)
答案 2 :(得分:1)
usd tf.reshape(),tf.matrix_transpose(),tf.nn.top_k(sorted = False),以及tf.nn.conv2d()中的'data_format'参数,详见http://www.infocool.net/kb/OtherCloud/201703/318346.html