我有一个5岁的结构化人口模型。我试图重复模型100次(以获得变化)。我努力做到这一点的最好方法可能是因为我不确定如何重复100次1年到5年的结果。换句话说,模拟不应该在第1年100次,然后在第2年100次,因为第1年的人口会持续到第2年。
# INITIALIZE VARIABLES
sum_mat <- matrix(rep(0,3*3),nrow=3) # Template for summer matrix
cc <- c(0.46,0.33,0.16,0.36,0.42) # Observed calf:cow ratios
nyears <- 5 # 5 year population model
sims <- 100 # simulate the 5 year population model 100 times
#for (k in 1:sims){
# LOOP THROUGH YEARS
for (i in 1:nyears){
# CONDITION INPUT VARIABLES BY FIRST VS ALL OTHER YEARS
if (i == 1) {
onf <- 0 # Initial number of calves (hypothetical population)
ony <- 250 # Initial number of yearlings
ona2 <- 500 # Initial number of cows
} else {
onf <- 0 # No calves in new pre-summer year
ony <- pops[1] # Calves during post-summer are now yearlings
ona2 <- pops[2]+pops[3] # Yearlings during post-summer now adults,added to existing summer adults
}
# SUMMER
pop0 <- c(onf,onf,onf,
ony,ony,ony,
ona2,ona2,ona2) # Vector of age structure at the beginning of summer
cc2=0
for (j in seq_along(cc)){ # Sample from observed calfcow ratios in order of list
cc2[j]=cc[i]
}
cowsurv=rnorm(n=1,mean=0.1,sd=.05) # Randomly select mortality rate for females
sy_s <- (1-(cowsurv)) # Yearlings summer survival
sa2_s <- (1-(cowsurv)) # Adult summer survival
# Leslie matrix for summer
sum_mat[1,] <- c(0,sy_s*cc2[j],sa2_s*cc2[j]) # Fecundity
sum_mat[2,] <- c(0,sy_s,0)
sum_mat[3,] <- c(0,0,sa2_s)
demo_s <- pop0*sum_mat # Matrix transition process
pop1 <- c(sum(demo_s[1,]),sum(demo_s[1,]),sum(demo_s[1,]),
sum(demo_s[2,]),sum(demo_s[2,]),sum(demo_s[2,]),
sum(demo_s[3,]),sum(demo_s[3,]),sum(demo_s[3,]))
pop0 <- c(pop0[1],pop0[4],pop0[7]) # Extract N calves, yearlings, adults pre-summer
pops <- c(pop1[1],pop1[4],pop1[7]) # Extract N calves, yearlings, adults post-summer
ccmod <- rep(cc2,3) # Extract calfcow ratio
age <- c('calf','1','2') # Add age-class identifier
stats <- cbind(age,pop0,pops,ccmod) # Combine the extracted values
stats <- as.data.frame(stats)
stats$year <- i # Add simulation year
# CONDITION OUTPUT BY FIRST VS ALL OTHER YEARS
if (i == 1) {
write.csv(stats,"popmodel.csv",row.names=FALSE)
} else {
write.table(stats, file="popmodel.csv", append=T, row.names=F,col.names=F,sep=",")
}
}
答案 0 :(得分:1)
您只需将模拟代码放在函数中并使用replicate
。例如,以下内容相当于您的代码,但使用矩阵运算更简洁,对我来说,更容易理解:
set.seed(1)
#Transition matrices
ageing_T <- as.matrix(read.table(text="
calves yearlings adults
calves 0 0 0
yearlings 1 0 0
adults 0 1 1
"))
reproduction_T <- as.matrix(read.table(text="
calves yearlings adults
calves 0 1 1
yearlings 0 0 0
adults 0 0 0
"))
step <- function(state, fecundity, mortality) {
((fecundity * reproduction_T) + diag(3)) %*% ((1-mortality) * ageing_T) %*% state
}
sim <- function(init, nyears) {
qx <- rnorm(nyears,mean=0.1,sd=.05)
cc <- c(0.46,0.33,0.16,0.36,0.42)
Reduce(function(s,i) step(s, cc[i], qx[i]), 1:nyears, init=init, acc=TRUE)
}
这会产生一次模拟运行:
sim(c(calves=250, yearlings=250, adults=250), 5)
这产生了100个
s <- replicate(100, sim(c(calves=250, yearlings=250, adults=250), 5), simplify=FALSE)
第5年结束时第100次模拟的输出(计数从1开始,到6结束),例如存储在s[[100]][[6]]