我想提前澄清我正在寻找一种使用Streams计算标准偏差的方法(目前我有一种计算&返回SD而不使用Streams的工作方法)。
我正在使用的数据集与Link中的匹配密切相关。如此链接所示,我能够对数据进行分组。得到平均值,但无法弄清楚如何获得SD。
代码
outPut.stream()
.collect(Collectors.groupingBy(e -> e.getCar(),
Collectors.averagingDouble(e -> (e.getHigh() - e.getLow()))))
.forEach((car,avgHLDifference) -> System.out.println(car+ "\t" + avgHLDifference));
我还检查了DoubleSummaryStatistics上的Link,但它似乎对SD没有帮助。
答案 0 :(得分:11)
您可以使用自定义收集器执行此任务,以计算平方和。 buit-in DoubleSummaryStatistics
收集器不会跟踪它。专家组in this thread对此进行了讨论,但最终没有实施。计算平方和时的困难是平方中间结果时的潜在溢出。
static class DoubleStatistics extends DoubleSummaryStatistics {
private double sumOfSquare = 0.0d;
private double sumOfSquareCompensation; // Low order bits of sum
private double simpleSumOfSquare; // Used to compute right sum for non-finite inputs
@Override
public void accept(double value) {
super.accept(value);
double squareValue = value * value;
simpleSumOfSquare += squareValue;
sumOfSquareWithCompensation(squareValue);
}
public DoubleStatistics combine(DoubleStatistics other) {
super.combine(other);
simpleSumOfSquare += other.simpleSumOfSquare;
sumOfSquareWithCompensation(other.sumOfSquare);
sumOfSquareWithCompensation(other.sumOfSquareCompensation);
return this;
}
private void sumOfSquareWithCompensation(double value) {
double tmp = value - sumOfSquareCompensation;
double velvel = sumOfSquare + tmp; // Little wolf of rounding error
sumOfSquareCompensation = (velvel - sumOfSquare) - tmp;
sumOfSquare = velvel;
}
public double getSumOfSquare() {
double tmp = sumOfSquare + sumOfSquareCompensation;
if (Double.isNaN(tmp) && Double.isInfinite(simpleSumOfSquare)) {
return simpleSumOfSquare;
}
return tmp;
}
public final double getStandardDeviation() {
return getCount() > 0 ? Math.sqrt((getSumOfSquare() / getCount()) - Math.pow(getAverage(), 2)) : 0.0d;
}
}
然后,您可以将此类与
一起使用Map<String, Double> standardDeviationMap =
list.stream()
.collect(Collectors.groupingBy(
e -> e.getCar(),
Collectors.mapping(
e -> e.getHigh() - e.getLow(),
Collector.of(
DoubleStatistics::new,
DoubleStatistics::accept,
DoubleStatistics::combine,
d -> d.getStandardDeviation()
)
)
));
这会将输入列表收集到一个地图中,其中值对应于同一个键的high - low
的标准偏差。
答案 1 :(得分:0)
您可以使用此自定义收集器:
Thread[] threads = new Thread[amountOfThreads];
int i=0;
for (Thread thread : threads) {
thread = new Thread(this);
thread.start();
threads[i++] = thread;
}
for (Thread thread : threads) {
thread.join();
}
然后只需在您的流上调用此收集器即可:
private static final Collector<Double, double[], Double> VARIANCE_COLLECTOR = Collector.of( // See https://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
() -> new double[3], // {count, mean, M2}
(acu, d) -> { // See chapter about Welford's online algorithm and https://math.stackexchange.com/questions/198336/how-to-calculate-standard-deviation-with-streaming-inputs
acu[0]++; // Count
double delta = d - acu[1];
acu[1] += delta / acu[0]; // Mean
acu[2] += delta * (d - acu[1]); // M2
},
(acuA, acuB) -> { // See chapter about "Parallel algorithm" : only called if stream is parallel ...
double delta = acuB[1] - acuA[1];
double count = acuA[0] + acuB[0];
acuA[2] = acuA[2] + acuB[2] + delta * delta * acuA[0] * acuB[0] / count; // M2
acuA[1] += delta * acuB[0] / count; // Mean
acuA[0] = count; // Count
return acuA;
},
acu -> acu[2] / (acu[0] - 1.0), // Var = M2 / (count - 1)
UNORDERED);