让我从我的位置开始:
我使用以下代码创建了上面的图像:
import matplotlib.pyplot as plt
import numpy as np
color_palette_name = 'gist_heat'
cmap = plt.cm.get_cmap(color_palette_name)
bgcolor = cmap(np.random.rand())
f = plt.figure(figsize=(12, 12), facecolor=bgcolor,)
ax = f.add_subplot(111)
ax.axis('off')
t = np.linspace(0, 2 * np.pi, 1000)
x = np.cos(t) + np.cos(6. * t) / 2.0 + np.sin(14. * t) / 3.0
y = np.sin(t) + np.sin(6. * t) / 2.0 + np.cos(14. * t) / 3.0
ax.plot(x, y, color=cmap(np.random.rand()))
ax.fill(x, y, color=cmap(np.random.rand()))
plt.tight_layout()
plt.savefig("../demo/tricky.png", facecolor=bgcolor, edgecolor=cmap(np.random.rand()), dpi=350)
有没有办法填充当线与其他颜色交叉时创建的循环(或类似三角形的区域)?它不一定是matplotlib,它可能是scikit-image或其他一些库。
我正在考虑一些伪代码:
for region in regions:
ax.fill(region, color=cmap(np.random.rand()))
但我不知道如何获得regions
,或者它是如何填充的。
答案 0 :(得分:3)
问题首先对我来说似乎很简单,我的想法是使用斑点分析来检测不同的斑点,按大小对它们进行分组,并使用填充算法为它们着色。
但是,我遇到了一些我没有修改的blob分析默认值的问题,这需要花费一些时间。此外,我还没有找到任何用于使用OpenCV进行泛洪填充或着色blob的python代码片段,并且与旧版本相比,使用SimpleBlobDetection有一些语法更改,我只能找到很少的文档和示例代码。因此,所有这些代码也可能对其他用户有用。
希望我已正确识别您想要找到的细分。如果你不想包括大的黑色外叶,可以注释掉一行。
为了可视化,您可以调整图像大小(此时已注释掉,请记住相应地调整大小阈值4 * 4 = 16)
所有这些选项的代码有点冗长,但希望很容易阅读。我已经从OpenCV中学到了很多关于blob分析的问题,谢谢!
顺便说一句,好的形象。import numpy as np
import cv2
im = cv2.imread('tricky.png')
# For better visibility, resize image to better fit screen
#im= cv2.resize(im, dsize=(0,0),fx=0.25, fy=0.25)
#convert to gray value for blob analysis
imgray= cv2.cvtColor(im,cv2.COLOR_BGR2GRAY)
#### Blob analysis to find inner white leaves
# SimpleBlobDetector will find black blobs on white surface, this is why type=cv2.THRESH_BINARY_INV is necessary
ret,imthresh = cv2.threshold(imgray,160, 255,type=cv2.THRESH_BINARY_INV)
# Setup SimpleBlobDetector parameters.
params = cv2.SimpleBlobDetector_Params()
# Filter by Area.
params.filterByArea = True
params.minArea = 15000
params.maxArea = 150000
# Create a detector with the parameters
detector = cv2.SimpleBlobDetector_create(params)
# Detect blobs.
keypoints = detector.detect(imthresh)
# Draw detected blobs as red circles.
# cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures
# the size of the circle corresponds to the size of blob
im_with_keypoints = cv2.drawKeypoints(imthresh, keypoints, np.array([]), (0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
# Show blobs
cv2.imshow("Keypoints", im_with_keypoints)
####floodfill inner white leaves with blue
#http://docs.opencv.org/3.0-beta/modules/imgproc/doc/miscellaneous_transformations.html
#Create a black mask for floodfill. Mask needs to be 2 pixel wider and taller
maskborder=imgray.copy()
maskborder[:] = 0
bordersize=1
maskborder=cv2.copyMakeBorder(maskborder, top=bordersize, bottom=bordersize, left=bordersize, right=bordersize, borderType= cv2.BORDER_CONSTANT, value=[255,255,255] )
print imgray.shape[:2]
print maskborder.shape[:2]
#Create result image for floodfill
result = im.copy()
#fill white inner segments with blue color
for k in keypoints:
print int(k.pt[0]),int(k.pt[1])
seed_pt = int(k.pt[0]),int(k.pt[1])
cv2.floodFill(result, maskborder, seed_pt, (255,0, 0))
#### Blob analysis to find small triangles
# SimpleBlobDetector will find black blobs on white surface, this is why type=cv2.THRESH_BINARY_INV is necessary
ret,imthresh2 = cv2.threshold(imgray,150, 255,type=cv2.THRESH_BINARY)
ret,imthresh3 = cv2.threshold(imgray,140, 255,type=cv2.THRESH_BINARY_INV)
imthresh4 = cv2.add(imthresh2,imthresh3)
# Setup SimpleBlobDetector parameters.
params = cv2.SimpleBlobDetector_Params()
# Filter by Area.
params.filterByArea = True
params.minArea = 20
params.maxArea = 1000
params.maxArea = 50000 #Using this line includes the outer dark leaves. Comment out if necessary
# Don't filter by Circularity
params.filterByCircularity = False
# Don't filter by Convexity
params.filterByConvexity = False
# Don't filter by Inertia
params.filterByInertia = False
# Create a detector with the parameters
detector = cv2.SimpleBlobDetector_create(params)
# Detect blobs.
keypoints = detector.detect(imthresh4)
# Draw detected blobs as red circles.
# cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS ensures
# the size of the circle corresponds to the size of blob
im_with_keypoints2 = cv2.drawKeypoints(imthresh4, keypoints, np.array([]), (0,0,255), cv2.DRAW_MATCHES_FLAGS_DRAW_RICH_KEYPOINTS)
# Show blobs
cv2.imshow("Keypoints2", im_with_keypoints2)
####floodfill triangles with green
#http://docs.opencv.org/3.0-beta/modules/imgproc/doc/miscellaneous_transformations.html
#Create a black mask for floodfill. Mask needs to be 2 pixel wider and taller
maskborder=imgray.copy()
maskborder[:] = 0
bordersize=1
maskborder=cv2.copyMakeBorder(maskborder, top=bordersize, bottom=bordersize, left=bordersize, right=bordersize, borderType= cv2.BORDER_CONSTANT, value=[255,255,255] )
print imgray.shape[:2]
print maskborder.shape[:2]
#Create result image for floodfill
result2 = result.copy()
#fill triangles with green color
for k in keypoints:
print int(k.pt[0]),int(k.pt[1])
seed_pt = int(k.pt[0]),int(k.pt[1])
cv2.floodFill(result2, maskborder, seed_pt, (0,255, 0))
#cv2.imshow('main',im)
#cv2.imshow('gray',imgray)
#cv2.imshow('borders',maskborder)
#cv2.imshow('threshold2',imthresh2)
#cv2.imshow('threshold3',imthresh3)
#cv2.imshow('threshold4',imthresh4)
cv2.imshow("Result", result2)
cv2.imwrite("result.png",result2)
cv2.waitKey(0)
cv2.destroyAllWindows()