我已经在python中编写了我的自定义成对相似度函数,它给出了一个特征X矩阵(包含特征行),在给定相似性度量的情况下,找到并将输出作为k最近邻居返回给每个项目:
def print_pairwise_sim_for_graphlab(X,item_ids,metric,p,knn):
N = len(X)
SI = DI.squareform(DI.pdist(X,metric,p))
q = -1
Y = np.zeros((N*knn,4))
for i in range(0, N):
for k in range(1, knn+1):
q = q + 1
Y[q,0] = item_ids[i]
Y[q,1] = item_ids[np.argsort(SI[i,:])[-k]]
Y[q,2] = np.sort(SI[i,:])[-k]
Y[q,3] = k
return (Y)
我称之为:
nn_SCD_min = print_pairwise_sim_for_graphlab(LL_features_SCD_min_np,item_ids,'minkowski',p,knn)
其中
LL_features_SCD_min_np
array(
[[-200, -48, -127, ..., 1, 0, 1],
[-199, -38, -127, ..., 0, 0, 1],
[-202, -60, -127, ..., 1, 0, 1],
...,
[-202, -60, -127, ..., 1, 0, 1],
[-198, 56, -120, ..., 1, 0, 1],
[-202, -85, -127, ..., 1, 0, 1]])
输出如下所示
nn_SCD_min =
array([[ 8.90000000e+01, 4.71460000e+04, 1.85300000e+03,
1.00000000e+00],
[ 8.90000000e+01, 8.11470000e+04, 1.84600000e+03,
2.00000000e+00],
[ 8.90000000e+01, 2.20700000e+03, 1.84600000e+03,
3.00000000e+00],
...,
[ 8.24630000e+04, 1.00000000e+03, 1.39300000e+03,
8.00000000e+00],
[ 8.24630000e+04, 5.98930000e+04, 1.39200000e+03,
9.00000000e+00],
[ 8.24630000e+04, 1.48900000e+03, 1.35000000e+03,
1.00000000e+01]])
在Graphlab中,我想将输出用作graphlab.recommender.item_similarity_recommender.create
的输入。
我用它如下:
m2 = gl.item_similarity_recommender.create(ratings_5K, nearest_items=nn_SCD_min)
我收到以下错误:
87 _get_metric_tracker().track(metric_name, value=1, properties=track_props, send_sys_info=False)
88
---> 89 raise ToolkitError(str(message))
ToolkitError: Option 'nearest_items' not recognized
我认为错误的主要原因是我的nn_SCD_min
需要作为SFrame导入(这里看起来像一个数组)。 nn_SCD_min
有四列。我相信列应该有标题如下:
item_id, similar, score, rank
如何更改数组' nn_SCD_min'到具有以上四个标题的SFrame
?任何关于我采取这样做的想法都非常感谢。
答案 0 :(得分:0)
您可以直接从numpy数组创建SFrame。它将具有单列数组类型。然后,您可以unpack
进入四列SFrame。
>>> nearest_items = gl.SFrame(nn_SCD_min)
>>> nearest_items = nearest_items.unpack('X1', '')\
.rename({'0': 'item_id',
'1': 'similar',
'2': 'score',
'3': 'rank'})
>>> nearest_items
Columns:
item_id float
similar float
score float
rank float
Rows: 6
Data:
+---------+---------+--------+------+
| item_id | similar | score | rank |
+---------+---------+--------+------+
| 89.0 | 47146.0 | 1853.0 | 1.0 |
| 89.0 | 81147.0 | 1846.0 | 2.0 |
| 89.0 | 2207.0 | 1846.0 | 3.0 |
| 82463.0 | 1000.0 | 1393.0 | 8.0 |
| 82463.0 | 59893.0 | 1392.0 | 9.0 |
| 82463.0 | 1489.0 | 1350.0 | 10.0 |
+---------+---------+--------+------+