无法使用英特尔MKL安装Scipy

时间:2016-03-27 11:37:09

标签: python scipy intel-mkl fedora-23

我成功安装了Numpy" numpy-1.12.0.dev0 + 1380fdd-py2.7-linux-x86_64.egg"源自英特尔MKL(主要遵循https://software.intel.com/en-us/articles/numpyscipy-with-intel-mkl的指示)。 numpy.show_config()显示以下内容:

Python 2.7.10 (default, Sep  8 2015, 17:20:17) 
[GCC 5.1.1 20150618 (Red Hat 5.1.1-4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> import numpy
>>> numpy.show_config()
lapack_opt_info:
    libraries = ['mkl_rt', 'pthread']
    library_dirs = ['/opt/intel/compilers_and_libraries_2016.1.150/linux/mkl/lib/intel64']
    define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
    include_dirs = ['/opt/intel/compilers_and_libraries_2016.1.150/linux/mkl/include']
blas_opt_info:
    libraries = ['mkl_rt', 'pthread']
    library_dirs = ['/opt/intel/compilers_and_libraries_2016.1.150/linux/mkl/lib/intel64']
    define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
    include_dirs = ['/opt/intel/compilers_and_libraries_2016.1.150/linux/mkl/include']
lapack_mkl_info:
    libraries = ['mkl_rt', 'pthread']
    library_dirs = ['/opt/intel/compilers_and_libraries_2016.1.150/linux/mkl/lib/intel64']
    define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
    include_dirs = ['/opt/intel/compilers_and_libraries_2016.1.150/linux/mkl/include']
blas_mkl_info:
    libraries = ['mkl_rt', 'pthread']
    library_dirs = ['/opt/intel/compilers_and_libraries_2016.1.150/linux/mkl/lib/intel64']
    define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
    include_dirs = ['/opt/intel/compilers_and_libraries_2016.1.150/linux/mkl/include']
mkl_info:
    libraries = ['mkl_rt', 'pthread']
    library_dirs = ['/opt/intel/compilers_and_libraries_2016.1.150/linux/mkl/lib/intel64']
    define_macros = [('SCIPY_MKL_H', None), ('HAVE_CBLAS', None)]
    include_dirs = ['/opt/intel/compilers_and_libraries_2016.1.150/linux/mkl/include']

numpy.test()也可以正常工作:

>>> numpy.test()
Running unit tests for numpy
NumPy version 1.12.0.dev0+1380fdd
NumPy relaxed strides checking option: True
NumPy is installed in /usr/lib64/python2.7/site-packages/numpy-1.12.0.dev0+1380fdd-py2.7-linux-x86_64.egg/numpy
Python version 2.7.10 (default, Sep  8 2015, 17:20:17) [GCC 5.1.1 20150618 (Red Hat 5.1.1-4)]
nose version 1.3.7
[....................SKIP..........................]
----------------------------------------------------------------------
Ran 5855 tests in 51.180s

OK (KNOWNFAIL=6, SKIP=8)
<nose.result.TextTestResult run=5855 errors=0 failures=0>

但由于某种原因,我无法通过python setup.py config --compiler=intelem --fcompiler=intelem build_clib --compiler=intelem --fcompiler=intelem build_ext --compiler=intelem --fcompiler=intelem installpip install scipy从源代码安装Scipy。从源代码我收到以下错误:

RuntimeError: Running cythonize failed!

检查cython:

cython -V
Cython version 0.23

通过点头导线安装到:

Command "/usr/bin/python -u -c "import setuptools, tokenize;__file__='/tmp/pip-build-ticToS/scipy/setup.py';exec(compile(getattr(tokenize, 'open', open)(__file__).read().replace('\r\n', '\n'), __file__, 'exec'))" install --record /tmp/pip-qnZ8HE-record/install-record.txt --single-version-externally-managed --compile" failed with error code 1 in /tmp/pip-build-ticToS/scipy/

知道我做错了什么吗?

我的操作系统是Thinkpad T450s上的Fedora 23。一个侧面的问题是,我也认识到numpy.test()在不使用英特尔MKL的情况下要快得多。对此有何解释?

非常感谢你。

1 个答案:

答案 0 :(得分:1)

通过groupinstall安装redhat-rpm-config'Development Tools'解决了这个问题。