在standard prefetching queue之后,我通过一些额外的验证代码扩展了前面提到的示例,请参阅附带的代码。也就是说,每个第i个训练步骤,在验证集上评估学习模型(在我的例子中是几个)。验证集不能通过队列提供,因此一个可能的想法是使用共享变量构建一个额外的推理图。
这在某种程度上有效,但是在训练完成后,程序挂起(在coord.join()
)并最终抛出异常:Coordinator stopped with threads still running:...
然后异步加载线程也抛出异常。可以通过coordinator
子句来解决try/except
异常(请参阅下面的代码),但异步线程仍会抛出异常(但不会妨碍主程序,但不应该在我的意见中发生) ---它有while
循环,应该告诉它停止)。
有趣的是,如果培训没有运行任何评估代码(即if (it+1)%stop == 0:
注释掉后的阻止),那么coord.join()
根本不会挂起。
我的问题:我在这里做错了什么?似乎.request_stop()
没有做我希望它应该做的事情?
import tensorflow as tf
import numpy as np
# some parameters
btsz = 100 # batch size
some_shape = 20 # size of one input (no of dims)
iters = 1000 # that many single training steps
ith = 10 # run validation sets every so often
# datastores (sort of complex backends, SQL like)
ds_train = ... # the one for training
ds_val1, ds_val2, ds_val3 = ... # having the validation data
def async_load(coord, session, queue, datastore,
tf_input, tf_target):
"""
Feed queue in async way. Inputs can be extracted
from datastore only one row at a time.
"""
while not coord.should_stop():
input = extract_one_input_as_numpy(datastore)
target = extract_numpy_from(datastore) # either 0 or 1
session.run(queue, feed_dict={tf_input: input, tf_target: target})
def evaluate(sess, datastore, tf_input, tf_target, tf_loss, btsz):
"""
Evaluate current model (represented as tf_loss) on a datastore.
"""
loss = []
for i in xrange(something):
input_batch = collect_btsz_many_single examples(datastore)
target_batch = same_for_targets(datastore)
tmp, = sess.run([tf_loss], feed_dict={tf_input:input_batch, tf_target:target_batch})
loss.append(tmp)
return np.mean(loss)
def log_reg(input, target, W, b):
"""
Simple logistic regression model.
"""
y = tf.matmul(input, W) + b
y_bin = tf.to_int32(y > 0)
t_bin = tf.to_int32(target > 0)
loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=y, targets=target))
correct_prediction = tf.equal(y_bin, t_bin)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))
return y, loss, accuracy
with tf.Session() as sess:
# Placeholders to represent one input/target pair from a data store.
ds_inpt = tf.placeholder(tf.float32, shape=[some_shape])
ds_trgt = tf.placeholder(tf.float32, shape=[])
queue = tf.FIFOQueue(capacity=10000, dtypes=[tf.float32, tf.float32],
shapes=[[], [some_shape], shared_name="FIFO", name="FIFO")
# enqueuing, this will be used in the async loading.
enqueue_op = queue.enqueue([ds_trgt, ds_inpt])
# dequeue from queue q, with batch size btsz
q_trgt, q_inpt = queue.dequeue_many(btsz)
# Paramters for Logistic Regression
# two functions that build shared variables and initialize these
W = weight_variable([some_shape, 1])
b = bias_variable([1])
# training model, feed from dequeuing the async queue
y, loss, accuracy = log_reg(input=q_inpt, target=q_trgt, W=W, b=b)
train_step = tf.train.AdamOptimizer(learning_rate=0.001).minimize(loss)
# inputs for validation models
val_inpt = tf.placeholder(tf.float32, shape=[btsz, some_shape])
val_trgt = tf.placeholder(tf.float32, shape=[btsz])
# validation model
val_y, val_loss, val_accuracy = log_reg(input=val_inpt, target=val_trgt, W=W, b=b)
sess.run(tf.initialize_all_variables())
try:
coord = tf.train.Coordinator()
# Start a thread to enqueue data asynchronously, and hide I/O latency.
t = threading.Thread(target=async_load,
args=(coord, sess, enqueue_op, ds_train
ds_inpt, ds_trgt))
t.start()
# collect loss/accuracy for training
# and losses for validation/test sets.
tr_loss = []
tr_acc = []
v_loss = []
for it in xrange(iters):
_, _loss, _acc = sess.run([train_step, loss, accuracy])
tr_loss.append(_loss)
tr_acc.append(_acc)
if (it+1)%stop == 0:
# run trained model on validation set 1
tmp = evaluate(sess=sess, data=ds_val1,
tf_inpt=val_inpt, tf_trgt=val_trgt,
tf_loss=val_loss, btsz)
v_loss.append(tmp)
# run trained model on validation set 2
tmp = evaluate(sess=sess, data=ds_val2,
tf_inpt=val_inpt, tf_trgt=val_trgt,
tf_loss=val_loss, btsz)
v_loss.append(tmp)
# run trained model on validation set 3
tmp = evaluate(sess=sess, data=ds_val3,
tf_inpt=val_inpt, tf_trgt=val_trgt,
tf_loss=val_loss, btsz)
v_loss.append(tmp)
coord.request_stop()
coord.join([t])
except RuntimeError as rte:
print("Caught {}".format(rte))
# Clear everything!
tf.reset_default_graph()
答案 0 :(得分:5)
您的代码中存在竞争条件。如果发生以下事件,则运行async_load()
的线程将永久阻止:
async_load()
调用coord.should_stop()
,返回False
。async_load()
调用session.run(queue, ...)
,但队列已满,因此调用无限期阻止。coord.request_stop()
。coord.join([t])
,因为(2)而永久阻止。避免这种情况的一种方法是创建一个queue.close(cancel_pending_enqueues=True)
op,并在调用coord.request_stop()
之前在主线程中运行它。这将取消阻止async_load()
线程,并启用coord.join([t])
返回。