numpy - 在数组的每一行上应用聚合

时间:2016-03-24 15:47:42

标签: python arrays numpy

我想在numpy数组上应用一些聚合。

x = np.array([ ([[ 1.87918162,  1.12919822, -1.63856741],\
       [ 0.40560484,  0.96425656,  0.7847214 ],\
       [-0.83472207,  0.88918246, -0.83298299],\
       [-1.29211004,  0.71730071, -2.09109609],\
       [-1.65800248,  0.49154087,  0.14932455]]),\
 ([[ 1.87918162,  1.12919822, -1.63856741],\
       [-0.21786626, -0.23561859, -0.19750753],\
       [-0.83472207,  0.88918246, -0.83298299],\
       [-0.34967282,  0.51348973, -0.30882943],\
       [ 0.35654636, -0.64453956, -1.3066075 ],\
       [ 0.187328  , -1.32496725, -0.05783984]])])
print type(x)
print x[0]
print np.mean(x[0], axis=0)
print np.mean(x, axis=0)

>>> <type 'numpy.ndarray'>
>>> [[1.87918162, 1.12919822, -1.63856741], [0.40560484, 0.96425656, 0.7847214], [-0.83472207, 0.88918246, -0.83298299], [-1.29211004, 0.71730071, -2.09109609], [-1.65800248, 0.49154087, 0.14932455]]
>>> [-0.30000963  0.83829576 -0.72572011]

错误是:

TypeError: unsupported operand type(s) for /: 'list' and 'long'

我不明白为什么它在一行而不是在整个阵列上工作。我怀疑阵列形状的不规则性会导致问题 但是如果不在数组上使用for循环迭代并在一个数组中连接所有结果,我怎么能处理呢?

编辑

预期结果是垂直每行的总和。所以结果应该是一个维度数组(2,3)。

1 个答案:

答案 0 :(得分:2)

您输入的是datatype = Object的NumPy数组,并且数据格式不规则,因此您无法使用np.mean(x, axis=0)之类的内容。相反,对于这种情况,您可以垂直堆叠这些行,然后使用np.add.reduceat执行总和减少,直到xaxis=0沿x的每个元素的长度结束。因此,我们将采用几乎矢量化的方法(几乎因为我们通过循环理解获得lens = np.array([len(i) for i in x]) cut_idx = np.append(0,lens[:-1]).cumsum() out = np.add.reduceat(np.vstack(x),cut_idx,axis=0)/lens[:,None] 的每个元素的长度,但这不是计算密集型的),如此 -

In [89]: x = np.array([ ([[ 1.87918162,  1.12919822, -1.63856741],\
    ...:        [ 0.40560484,  0.96425656,  0.7847214 ],\
    ...:        [-0.83472207,  0.88918246, -0.83298299],\
    ...:        [-1.29211004,  0.71730071, -2.09109609],\
    ...:        [-1.65800248,  0.49154087,  0.14932455]]),\
    ...:  ([[ 1.87918162,  1.12919822, -1.63856741],\
    ...:        [-0.21786626, -0.23561859, -0.19750753],\
    ...:        [-0.83472207,  0.88918246, -0.83298299],\
    ...:        [-0.34967282,  0.51348973, -0.30882943],\
    ...:        [ 0.35654636, -0.64453956, -1.3066075 ],\
    ...:        [ 0.187328  , -1.32496725, -0.05783984]]),\
    ...: ([[ 1.87918162,  1.12919822, -1.63856741],\
    ...:        [-1.29211004,  0.71730071, -2.09109609],\
    ...:        [-1.65800248,  0.49154087,  0.14932455]])       
    ...:        ])

In [90]: np.mean(x[0], axis=0)
Out[90]: array([-0.30000963,  0.83829576, -0.72572011])

In [91]: np.mean(x[1], axis=0)
Out[91]: array([ 0.17013247,  0.0544575 , -0.72372245])

In [92]: np.mean(x[2], axis=0)
Out[92]: array([-0.35697697,  0.7793466 , -1.19344632])

In [93]: out
Out[93]: 
array([[-0.30000963,  0.83829576, -0.72572011],
       [ 0.17013247,  0.0544575 , -0.72372245],
       [-0.35697697,  0.7793466 , -1.19344632]])

这是针对问题中列出的示例输入的扩展版本的示例运行 -

{{1}}