在SQLAlchemy

时间:2016-03-23 15:26:33

标签: python sqlite join pandas sqlalchemy

我有一张表dna_extraction_protocols,其中包含有关DNA提取方案的数据。存储在Incubation表上的incubations个对象占用了许多密钥。孵化具有duration_unit密钥,其中包含MeasurementUnit对象,该对象包含在measurement_units表中。

这些表的创建如下:

class DNAExtractionProtocol(Protocol):
    __tablename__ = 'dna_extraction_protocols'
    __mapper_args__ = {'polymorphic_identity': 'dna_extraction'}
    id = Column(Integer, ForeignKey('protocols.id'), primary_key=True)
    sample_mass = Column(Float)
    mass_unit_id = Column(String, ForeignKey('measurement_units.id'))
    mass_unit = relationship("MeasurementUnit", foreign_keys=[mass_unit_id])
    digestion_buffer_id = Column(String, ForeignKey("solutions.id"))
    digestion_buffer = relationship("Solution", foreign_keys=[digestion_buffer_id])
    digestion_buffer_volume = Column(Float)
    digestion_id = Column(Integer, ForeignKey("incubations.id"))
    digestion = relationship("Incubation", foreign_keys=[digestion_id])
    lysis_buffer_id = Column(String, ForeignKey("solutions.id"))
    lysis_buffer = relationship("Solution", foreign_keys=[lysis_buffer_id])
    lysis_buffer_volume = Column(Float)
    lysis_id = Column(Integer, ForeignKey("incubations.id"))
    lysis = relationship("Incubation", foreign_keys=[lysis_id])
    proteinase_id = Column(String, ForeignKey("solutions.id"))
    proteinase = relationship("Solution", foreign_keys=[proteinase_id])
    proteinase_volume = Column(Float)
    inactivation_id = Column(Integer, ForeignKey("incubations.id"))
    inactivation = relationship("Incubation", foreign_keys=[inactivation_id])
    cooling_id = Column(Integer, ForeignKey("incubations.id"))
    cooling = relationship("Incubation", foreign_keys=[cooling_id])
    centrifugation_id = Column(Integer, ForeignKey("incubations.id"))
    centrifugation = relationship("Incubation", foreign_keys=[centrifugation_id])

    volume_unit_id = Column(String, ForeignKey('measurement_units.id'))
    volume_unit = relationship("MeasurementUnit", foreign_keys=[volume_unit_id])

class Incubation(Base):
    __tablename__ = "incubations"
    id = Column(Integer, primary_key=True)
    speed = Column(Float)
    duration = Column(Float)
    temperature = Column(Float)
    movement = Column(String) # "centrifuge" or "shake"

    #speed - usually in RPM - will refer to either centrifugation or shaking (See above)
    speed_unit_id = Column(String, ForeignKey('measurement_units.id'))
    speed_unit = relationship("MeasurementUnit", foreign_keys=[speed_unit_id])
    duration_unit_id = Column(String, ForeignKey('measurement_units.id'))
    duration_unit = relationship("MeasurementUnit", foreign_keys=[duration_unit_id])
    temperature_unit_id = Column(String, ForeignKey('measurement_units.id'))
    temperature_unit = relationship("MeasurementUnit", foreign_keys=[temperature_unit_id]

class MeasurementUnit(Base):
    __tablename__ = "measurement_units"
    id = Column(Integer, primary_key=True)
    code = Column(String, unique=True)
    long_name = Column(String)
    siunitx = Column(String)

现在,我想提取一个Pandas数据框,我可以在其中获取DNAPurificationProtocol对象,链接的Incubation对象和链接的MeasurementUnit对象的所有属性

我尝试了很多方法,这个方法似乎很适合第一种关系:

sql_query = session.query(DNAExtractionProtocol, MeasurementUnit, Incubation) \
    .join(MeasurementUnit, MeasurementUnit.id == DNAExtractionProtocol.volume_unit_id) \
    .join(Incubation, Incubation.id == DNAExtractionProtocol.lysis_id) \
    .filter(tables[table].code == code)

但对我来说,感觉就像是一个合理的延伸:

sql_query = session.query(DNAExtractionProtocol, MeasurementUnit, Incubation) \
    .join(MeasurementUnit, MeasurementUnit.id == DNAExtractionProtocol.volume_unit_id) \
    .join(Incubation, Incubation.id == DNAExtractionProtocol.lysis_id) \
    .join(MeasurementUnit, MeasurementUnit.id == Incubation.temperature_unit_id) \
    .filter(tables[table].code == code)

失败:

sqlalchemy.exc.OperationalError: (sqlite3.OperationalError) ambiguous column name: measurement_units.id [SQL: u'SELECT protocols.type, dna_extraction_protocols.id, protocols.id, protocols.code, protocols.name, dna_extraction_protocols.sample_mass, dna_extraction_protocols.mass_unit_id, dna_extraction_protocols.digestion_buffer_id, dna_extraction_protocols.digestion_buffer_volume, dna_extraction_protocols.digestion_id, dna_extraction_protocols.lysis_buffer_id, dna_extraction_protocols.lysis_buffer_volume, dna_extraction_protocols.lysis_id, dna_extraction_protocols.proteinase_id, dna_extraction_protocols.proteinase_volume, dna_extraction_protocols.inactivation_id, dna_extraction_protocols.cooling_id, dna_extraction_protocols.centrifugation_id, dna_extraction_protocols.volume_unit_id, measurement_units.id, measurement_units.code, measurement_units.long_name, measurement_units.siunitx, incubations.id, incubations.speed, incubations.duration, incubations.temperature, incubations.movement, incubations.speed_unit_id, incubations.duration_unit_id, incubations.temperature_unit_id \nFROM protocols JOIN dna_extraction_protocols ON protocols.id = dna_extraction_protocols.id JOIN measurement_units ON measurement_units.id = dna_extraction_protocols.volume_unit_id JOIN incubations ON incubations.id = dna_extraction_protocols.lysis_id JOIN measurement_units ON measurement_units.id = incubations.temperature_unit_id \nWHERE protocols.code = ?'] [parameters: ('EPDqEP',)]

知道我怎么能得到我想要的东西?

1 个答案:

答案 0 :(得分:1)

问题的核心在于你要加入同一张桌子两次。在SQL-land中,解决这个问题的方法是将其中一个别名:

SELECT * FROM protocols
JOIN dna_extraction_protocols ON ...
JOIN measurement_units ON ...
JOIN incubations ON ...
JOIN measurement_units AS incubation_measurement_units ON incubation_measurement_units.id = incubations.temperature_unit_id

同样的事情:

sql_query = session.query(DNAExtractionProtocol, MeasurementUnit, Incubation) \
    .join(MeasurementUnit, ...) \
    .join(Incubation, ...) \
    .join(MeasurementUnit, ..., aliased=True) \
    .filter(tables[table].code == code)

如果您需要从别名表中返回列或过滤它们,您将遇到问题,因为您将无法消除两者之间的歧义。在这种情况下,您需要加入明确的aliased()构造。

IncubationMeasurementUnit = aliased(MeasurementUnit)
sql_query = session.query(DNAExtractionProtocol, MeasurementUnit, Incubation, IncubationMeasurementUnit) \
    .join(MeasurementUnit, ...) \
    .join(Incubation, ...) \
    .join(IncubationMeasurementUnit, ...) \
    .filter(tables[table].code == code)