Intellij连接hortonwork spark远程失败

时间:2016-03-21 23:40:15

标签: apache-spark hadoop-streaming

我有一个带有火花1.6设置的hortonwork沙箱2.4。然后我使用hdp spark jar和scala 2.10.5在windows中创建Intellij spark开发环境。因此,我的窗口和hdp环境之间匹配spark和scala版本,如here所示。我的Intellij开发环境与本地的Master一起工作。 然后我尝试使用

连接Windows中的hdp
val sparkConf = new SparkConf()
      .setAppName("spark-word-count")
      .setMaster("spark://10.33.241.160:7077")

我得到以下错误信息,并且无法解决问题。请帮忙!

6/03/21 16:27:40 INFO SparkUI: Started SparkUI at http://10.33.240.126:4040
16/03/21 16:27:40 INFO AppClient$ClientEndpoint: Connecting to master spark://10.33.241.160:7077...
16/03/21 16:27:41 WARN AppClient$ClientEndpoint: Failed to connect to master 10.33.241.160:7077
java.io.IOException: Failed to connect to /10.33.241.160:7077
    at org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:216)
    at org.apache.spark.network.client.TransportClientFactory.createClient(TransportClientFactory.java:167)
    at org.apache.spark.rpc.netty.NettyRpcEnv.createClient(NettyRpcEnv.scala:200)
    at org.apache.spark.rpc.netty.Outbox$$anon$1.call(Outbox.scala:187)
    at org.apache.spark.rpc.netty.Outbox$$anon$1.call(Outbox.scala:183)
    at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:334)
    at java.util.concurrent.FutureTask.run(FutureTask.java:166)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
    at java.lang.Thread.run(Thread.java:722)
Caused by: java.net.ConnectException: Connection refused: no further information: /10.33.241.160:7077
    at sun.nio.ch.SocketChannelImpl.checkConnect(Native Method)
    at sun.nio.ch.SocketChannelImpl.finishConnect(SocketChannelImpl.java:692)
    at io.netty.channel.socket.nio.NioSocketChannel.doFinishConnect(NioSocketChannel.java:224)
    at io.netty.channel.nio.AbstractNioChannel$AbstractNioUnsafe.finishConnect(AbstractNioChannel.java:289)
    at io.netty.channel.nio.NioEventLoop.processSelectedKey(NioEventLoop.java:528)
    at io.netty.channel.nio.NioEventLoop.processSelectedKeysOptimized(NioEventLoop.java:468)
    at io.netty.channel.nio.NioEventLoop.processSelectedKeys(NioEventLoop.java:382)
    at io.netty.channel.nio.NioEventLoop.run(NioEventLoop.java:354)
    at io.netty.util.concurrent.SingleThreadEventExecutor$2.run(SingleThreadEventExecutor.java:111)
    ... 1 more
16/03/21 16:28:40 ERROR MapOutputTrackerMaster: Error communicating with MapOutputTracker
java.lang.InterruptedException
    at java.util.concurrent.locks.AbstractQueuedSynchronizer.tryAcquireSharedNanos(AbstractQueuedSynchronizer.java:1325)
    at scala.concurrent.impl.Promise$DefaultPromise.tryAwait(Promise.scala:208)
    at scala.concurrent.impl.Promise$DefaultPromise.ready(Promise.scala:218)
    at scala.concurrent.impl.Promise$DefaultPromise.result(Promise.scala:223)
    at scala.concurrent.Await$$anonfun$result$1.apply(package.scala:107)
    at scala.concurrent.BlockContext$DefaultBlockContext$.blockOn(BlockContext.scala:53)
    at scala.concurrent.Await$.result(package.scala:107)
    at org.apache.spark.rpc.RpcTimeout.awaitResult(RpcTimeout.scala:75)
    at org.apache.spark.rpc.RpcEndpointRef.askWithRetry(RpcEndpointRef.scala:101)
    at org.apache.spark.rpc.RpcEndpointRef.askWithRetry(RpcEndpointRef.scala:77)
    at org.apache.spark.MapOutputTracker.askTracker(MapOutputTracker.scala:110)
    at org.apache.spark.MapOutputTracker.sendTracker(MapOutputTracker.scala:120)
    at org.apache.spark.MapOutputTrackerMaster.stop(MapOutputTracker.scala:462)
    at org.apache.spark.SparkEnv.stop(SparkEnv.scala:93)
    at org.apache.spark.SparkContext$$anonfun$stop$12.apply$mcV$sp(SparkContext.scala:1756)
    at org.apache.spark.util.Utils$.tryLogNonFatalError(Utils.scala:1229)
    at org.apache.spark.SparkContext.stop(SparkContext.scala:1755)
    at org.apache.spark.scheduler.cluster.SparkDeploySchedulerBackend.dead(SparkDeploySchedulerBackend.scala:127)
    at org.apache.spark.deploy.client.AppClient$ClientEndpoint.markDead(AppClient.scala:264)
    at org.apache.spark.deploy.client.AppClient$ClientEndpoint$$anon$2$$anonfun$run$1.apply$mcV$sp(AppClient.scala:134)
    at org.apache.spark.util.Utils$.tryOrExit(Utils.scala:1163)
    at org.apache.spark.deploy.client.AppClient$ClientEndpoint$$anon$2.run(AppClient.scala:129)
    at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
    at java.util.concurrent.FutureTask$Sync.innerRunAndReset(FutureTask.java:351)
    at java.util.concurrent.FutureTask.runAndReset(FutureTask.java:178)
    at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$301(ScheduledThreadPoolExecutor.java:178)
    at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:293)
    at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
    at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
    at java.lang.Thread.run(Thread.java:722)

1 个答案:

答案 0 :(得分:0)

事实证明,每次服务器重启时,我都需要将hortonworks Spark设置为主服务器。然后使用我的intellij dev环境连接hdp作为slave。只需在hdp中运行./sbin/start-master.sh作为此link