在OpenCV中,我可以将RGB 1920 x 1080垫子乘以3 x 3 Mat来改变我的源Mat的颜色组成。一旦我的源垫正确成形,我可以使用'*'运算符来执行乘法。使用cv :: gpu :: GpuMat时,此运算符不可用。
我的问题是如何格式化我的输入源Mat使用cv :: gpu :: gemm?我甚至可以使用cv :: gpu :: gemm?
这是唯一一个在OpenCV库中执行矩阵乘法的调用。 cv :: gpu :: gemm想要查看CV_32FC1,CV_64FC1类型Mat。我通常与CPU一起使用的类型是CV_32FC3。
display: table-cell
更新: 作为测试,我创建了测试例程:
//sourceMat is CV_32FC3 1920 x 1080 Mat
Mat sourceMat = matFromBuffer(data->bufferA, data->widthA, data->heightA);
//This is the color Matrix
float matrix[3][3] = {{1.057311, -0.204043, 0.055648},
{ 0.041556, 1.875992, -0.969256},
{-0.498535,-1.537150, 3.240479}};
Mat colorMatrixMat = Mat(3, 3, CV_32FC1, matrix).t();
//Color Correct the Mat
Mat linearSourceMat = sourceMat.reshape(1, 1080*1920);
Mat multipliedMatrix = linearSourceMat * colorMatrixMat;
Mat recoloredMat = multipliedMatrix.reshape(3, 1080);
我收到的错误是:
static int gpuTest(){
float matrix[9] = {1.057311, -0.204043, 0.055648, 0.041556, 1.875992, -0.969256, -0.498535,-1.537150, 3.240479};
Mat matrixMat = Mat(1, 9, CV_32FC1, matrix).t();
cv::gpu::GpuMat gpuMatrixMat;
gpuMatrixMat.upload(matrixMat);
float matrixDest[9] = {1,1,1,1,1,1,1,1,1};
Mat matrixDestMat = Mat(1, 9, CV_32FC1, matrixDest).t();
cv::gpu::GpuMat destMatrixMat;
destMatrixMat.upload(matrixDestMat);
cv::gpu::GpuMat nextMat;
cv::gpu::gemm(gpuMatrixMat, destMatrixMat, 1, cv::gpu::GpuMat(), 0, nextMat);
return 0;
};
现在src1Size.width如何等于src2Size.height?宽度和高度不同。
答案 0 :(得分:6)
这是使用OpenCV 3.1的最低工作示例。
#include <opencv2/opencv.hpp>
#include <opencv2/cudaarithm.hpp>
int main()
{
cv::Mat sourceMat = cv::Mat::ones(1080, 1920, CV_32FC3);
//This is the color Matrix
float matrix[3][3] = {
{ 1.057311, -0.204043, 0.055648 }
, { 0.041556, 1.875992, -0.969256 }
, { -0.498535, -1.537150, 3.240479 }
};
cv::Mat colorMatrixMat = cv::Mat(3, 3, CV_32FC1, matrix).t();
cv::Mat linearSourceMat = sourceMat.reshape(1, 1080 * 1920);
cv::Mat multipliedMatrix = linearSourceMat * colorMatrixMat;
try {
cv::Mat dummy, gpuMultipliedMatrix;
// Regular gemm
cv::gemm(linearSourceMat, colorMatrixMat, 1.0, dummy, 0.0, gpuMultipliedMatrix);
// CUDA gemm
// cv::cuda::gemm(linearSourceMat, colorMatrixMat, 1.0, dummy, 0.0, gpuMultipliedMatrix);
std::cout << (cv::countNonZero(multipliedMatrix != gpuMultipliedMatrix) == 0);
} catch (cv::Exception& e) {
std::cerr << e.what();
return -1;
}
}
请注意,当gemm(...)
的beta参数为零时,将忽略第三个输入矩阵(基于代码)。
不幸的是,我没有使用CUBLAS编译的OpenCV版本可以试用它,但它应该可以工作。
以下是有点推测......
要使用OpenCV 2.4,您需要添加更多内容。在致电gemm(...)
之前,您需要创建GpuMat
个对象并上传数据。
cv::gpu::GpuMat gpuLinSrc, gpuColorMat, dummy, gpuResult;
gpuLinSrc.upload(linearSourceMat);
gpuColorMat.upload(colorMatrixMat);
则...
cv::gpu::gemm(gpuLinSrc, gpuColorMat, 1.0, cv::gpu::GpuMat(), 0.0, gpuResult);
最后从GPU下载数据。
cv::Mat resultFromGPU;
gpuResult.download(resultFromGPU);
以下是一个更详细的示例,向您展示发生了什么:
#include <opencv2/opencv.hpp>
#include <iostream>
#include <numeric>
#include <vector>
// ============================================================================
// Make a 3 channel test image with 5 rows and 4 columns
cv::Mat make_image()
{
std::vector<float> v(5 * 4);
std::iota(std::begin(v), std::end(v), 1.0f); // Fill with 1..20
cv::Mat seq(5, 4, CV_32FC1, v.data()); // 5 rows, 4 columns, 1 channel
// Create 3 channels, each with different offset, so we can tell them apart
cv::Mat chans[3] = {
seq, seq + 100, seq + 200
};
cv::Mat merged;
cv::merge(chans, 3, merged); // 5 rows, 4 columns, 3 channels
return merged;
}
// Make a transposed color correction matrix.
cv::Mat make_color_mat()
{
float color_in[3][3] = {
{ 0.1f, 0.2f, 0.3f } // Coefficients for channel 0
, { 0.4f, 0.5f, 0.6f } // Coefficients for channel 1
, { 0.7f, 0.8f, 0.9f } // Coefficients for channel 2
};
return cv::Mat(3, 3, CV_32FC1, color_in).t();
}
void print_mat(cv::Mat m, std::string const& label)
{
std::cout << label << ":\n size=" << m.size()
<< "\n channels=" << m.channels()
<< "\n" << m << "\n" << std::endl;
}
// Perform matrix multiplication to obtain result point (r,c)
float mm_at(cv::Mat a, cv::Mat b, int r, int c)
{
return a.at<float>(r, 0) * b.at<float>(0, c)
+ a.at<float>(r, 1) * b.at<float>(1, c)
+ a.at<float>(r, 2) * b.at<float>(2, c);
}
// Perform matrix multiplication to obtain result row r
cv::Vec3f mm_test(cv::Mat a, cv::Mat b, int r)
{
return cv::Vec3f(
mm_at(a, b, r, 0)
, mm_at(a, b, r, 1)
, mm_at(a, b, r, 2)
);
}
// ============================================================================
int main()
{
try {
// Step 1
cv::Mat source_image(make_image());
print_mat(source_image, "source_image");
std::cout << "source pixel at (0,0): " << source_image.at<cv::Vec3f>(0, 0) << "\n\n";
// Step 2
cv::Mat color_mat(make_color_mat());
print_mat(color_mat, "color_mat");
// Step 3
// Reshape the source matrix to obtain a matrix:
// * with only one channel (CV_32FC1)
// * where each row corresponds to a single pixel from source
// * where each column corresponds to a single channel from source
cv::Mat reshaped_image(source_image.reshape(1, source_image.rows * source_image.cols));
print_mat(reshaped_image, "reshaped_image");
// Step 4
cv::Mat corrected_image;
// corrected_image = 1.0 * reshaped_image * color_mat
cv::gemm(reshaped_image, color_mat, 1.0, cv::Mat(), 0.0, corrected_image);
print_mat(corrected_image, "corrected_image");
// Step 5
// Reshape back to the original format
cv::Mat result_image(corrected_image.reshape(3, source_image.rows));
print_mat(result_image, "result_image");
std::cout << "result pixel at (0,0): " << result_image.at<cv::Vec3f>(0, 0) << "\n\n";
// Step 6
// Calculate one pixel manually...
std::cout << "check pixel (0,0): " << mm_test(reshaped_image, color_mat, 0) << "\n\n";
} catch (cv::Exception& e) {
std::cerr << e.what();
return -1;
}
}
// ============================================================================
首先我们创建一个小测试输入图像:
CV_32FC3
。我们按顺序将频道视为红色,绿色,蓝色。green = red + 100
和blue = red + 200
。source_image:
size=[4 x 5]
channels=3
[1, 101, 201, 2, 102, 202, 3, 103, 203, 4, 104, 204;
5, 105, 205, 6, 106, 206, 7, 107, 207, 8, 108, 208;
9, 109, 209, 10, 110, 210, 11, 111, 211, 12, 112, 212;
13, 113, 213, 14, 114, 214, 15, 115, 215, 16, 116, 216;
17, 117, 217, 18, 118, 218, 19, 119, 219, 20, 120, 220]
我们可以打印出一个像素,使结构更清晰:
source pixel at (0,0): [1, 101, 201]
创建一个样本颜色校正矩阵(转置),以便:
color_mat:
size=[3 x 3]
channels=1
[0.1, 0.40000001, 0.69999999;
0.2, 0.5, 0.80000001;
0.30000001, 0.60000002, 0.89999998]
我们希望使用系数 C
将源像素 S 转换为像素 TS = [ sr, sg, sb ]
T = [ tr, tg, tb ]
C = [ cr1, cr2, cr3;
cg1, cg2, cg3;
cb1, cb2, cb3]
这样
Tr = cr1 * sr + cr2 * sg + cr3 * sb
Tg = cg1 * sr + cg2 * sg + cg3 * sb
Tb = cb1 * sr + cb2 * sg + cb3 * sb
可以用以下矩阵表达式表示
T = S * C_transpose
为了能够使用上述算法,我们首先需要将图像重塑为一个矩阵:
在这种形状中,矩阵乘法意味着来自输入的每个像素/行乘以系数矩阵以确定输出中的一个像素/行。
重新整形的矩阵如下所示:
reshaped_image:
size=[3 x 20]
channels=1
[1, 101, 201;
2, 102, 202;
3, 103, 203;
4, 104, 204;
5, 105, 205;
6, 106, 206;
7, 107, 207;
8, 108, 208;
9, 109, 209;
10, 110, 210;
11, 111, 211;
12, 112, 212;
13, 113, 213;
14, 114, 214;
15, 115, 215;
16, 116, 216;
17, 117, 217;
18, 118, 218;
19, 119, 219;
20, 120, 220]
我们执行乘法,例如使用gemm
,得到以下矩阵:
corrected_image:
size=[3 x 20]
channels=1
[80.600006, 171.5, 262.39999;
81.200005, 173, 264.79999;
81.800003, 174.5, 267.20001;
82.400002, 176, 269.60001;
83, 177.5, 272;
83.600006, 179, 274.39999;
84.200005, 180.5, 276.79999;
84.800003, 182, 279.20001;
85.400002, 183.5, 281.60001;
86, 185, 284;
86.600006, 186.5, 286.39999;
87.200005, 188, 288.79999;
87.800003, 189.5, 291.20001;
88.400009, 191, 293.60001;
89, 192.5, 296;
89.600006, 194, 298.39999;
90.200005, 195.50002, 300.79999;
90.800003, 197, 303.20001;
91.400009, 198.5, 305.60001;
92, 200, 308]
现在我们可以将图像重新塑造成原始形状。结果是
result_image:
size=[4 x 5]
channels=3
[80.600006, 171.5, 262.39999, 81.200005, 173, 264.79999, 81.800003, 174.5, 267.20001, 82.400002, 176, 269.60001;
83, 177.5, 272, 83.600006, 179, 274.39999, 84.200005, 180.5, 276.79999, 84.800003, 182, 279.20001;
85.400002, 183.5, 281.60001, 86, 185, 284, 86.600006, 186.5, 286.39999, 87.200005, 188, 288.79999;
87.800003, 189.5, 291.20001, 88.400009, 191, 293.60001, 89, 192.5, 296, 89.600006, 194, 298.39999;
90.200005, 195.50002, 300.79999, 90.800003, 197, 303.20001, 91.400009, 198.5, 305.60001, 92, 200, 308]
让我们看看结果中的一个像素:
result pixel at (0,0): [80.6, 171.5, 262.4]
现在我们可以手动执行相应的计算(函数mm_test
和mm_at
)来仔细检查我们的结果。
check pixel (0,0): [80.6, 171.5, 262.4]