我有一个以JSON格式定义的非平凡的表模式(涉及嵌套和重复的字段)(具有名称,类型,模式属性)并存储在文件中。它已成功用于使用bq load命令填充bigquery表。
但是当我尝试使用Dataflow Python SDK和BigQuerySink做同样的事情时,schema
参数必须是以逗号分隔的'name':'type'
元素列表或bigquery.TableSchema
对象
有没有方便的方法可以将我的JSON架构设置为bigquery.TableSchema
,还是必须将其转换为name:value
列表?
答案 0 :(得分:6)
目前您无法直接指定JSON架构。您必须将模式指定为包含以逗号分隔的字段列表或bigquery.TableSchema
对象的字符串。
如果架构很复杂并且包含嵌套和/或重复的字段,我们建议您构建一个bigquery.TableSchema
对象。
以下是具有嵌套和重复字段的示例bigquery.TableSchema
对象。
from apitools.clients import bigquery
table_schema = bigquery.TableSchema()
# ‘string’ field
field_schema = bigquery.TableFieldSchema()
field_schema.name = 'fullName'
field_schema.type = 'string'
field_schema.mode = 'required'
table_schema.fields.append(field_schema)
# ‘integer’ field
field_schema = bigquery.TableFieldSchema()
field_schema.name = 'age'
field_schema.type = 'integer'
field_schema.mode = 'nullable'
table_schema.fields.append(field_schema)
# nested field
field_schema = bigquery.TableFieldSchema()
field_schema.name = 'phoneNumber'
field_schema.type = 'record'
field_schema.mode = 'nullable'
area_code = bigquery.TableFieldSchema()
area_code.name = 'areaCode'
area_code.type = 'integer'
area_code.mode = 'nullable'
field_schema.fields.append(area_code)
number = bigquery.TableFieldSchema()
number.name = 'number'
number.type = 'integer'
number.mode = 'nullable'
field_schema.fields.append(number)
table_schema.fields.append(field_schema)
# repeated field
field_schema = bigquery.TableFieldSchema()
field_schema.name = 'children'
field_schema.type = 'string'
field_schema.mode = 'repeated'
table_schema.fields.append(field_schema)
答案 1 :(得分:3)
我遇到了同样的问题。在我的情况下,我已经在bigquery中加载了一些json,并自动生成了一个模式。
所以我能够通过命令获得自动生成的模式:
bq show --format prettyjson my-gcp-project:my-bq-table |jq .schema > my-bq-table.json
然后可以使用此代码段将模式转换为bigquery.TableSchema
from apache_beam.io.gcp.internal.clients import bigquery
def _get_field_schema(**kwargs):
field_schema = bigquery.TableFieldSchema()
field_schema.name = kwargs['name']
field_schema.type = kwargs.get('type', 'STRING')
field_schema.mode = kwargs.get('mode', 'NULLABLE')
fields = kwargs.get('fields')
if fields:
for field in fields:
field_schema.fields.append(_get_field_schema(**field))
return field_schema
def _inject_fields(fields, table_schema):
for field in fields:
table_schema.fields.append(_get_field_schema(**field))
def parse_bq_json_schema(schema):
table_schema = bigquery.TableSchema()
_inject_fields(schema['fields'], table_schema)
return table_schema
它将与bigquery json架构规范一起使用,如果您像我一样懒,如果您对默认情况下可为空字符串的字段感到满意,则可以避免指定type
和mode
。
答案 2 :(得分:2)
BigQuery 库中有一个内置的转换器函数:
from google.cloud import bigquery
...
client = bigquery.Client()
client.schema_from_json('path/to/schema.json`)
答案 3 :(得分:1)
上述由Andrea Pierleoni发布的代码片段适用于google-cloud-bigquery
python客户端的旧版本,例如,恰好通过0.25.0
安装的google-cloud-bigquery
的{{1}}版本。
但是,BigQuery Python客户端API在pip install apache-beam[gcp]
的最新版本中发生了巨大变化,例如在我当前使用的google-cloud-bigquery
和1.8.0
版本中不起作用。
如果您使用的是bigquery.TableFieldSchema()
软件包的最新版本,则可以通过以下方法从JSON文件中获取所需的bigquery.TableSchema()
列表(例如,创建表所必需的列表)。这是安德烈·皮耶罗尼(Andrea Pierleoni)上面发布的代码的改编(感谢!)
google-cloud-bigquery
现在,假设您有一个表的schema already defined in JSON。假设您有this particular "schema.json" file,然后使用上述帮助方法,则可以为Python客户端获取所需的SchemaField
表示形式,如下所示:
def _get_field_schema(field):
name = field['name']
field_type = field.get('type', 'STRING')
mode = field.get('mode', 'NULLABLE')
fields = field.get('fields', [])
if fields:
subschema = []
for f in fields:
fields_res = _get_field_schema(f)
subschema.append(fields_res)
else:
subschema = []
field_schema = bigquery.SchemaField(name=name,
field_type=field_type,
mode=mode,
fields=subschema
)
return field_schema
def parse_bq_json_schema(schema_filename):
schema = []
with open(schema_filename, 'r') as infile:
jsonschema = json.load(infile)
for field in jsonschema:
schema.append(_get_field_schema(field))
return schema
现在到create a table having the above schema using the Python SDK,您可以这样做:
SchemaField
您可以选择设置基于时间的分区(如果需要),如下所示:
>>> res_schema = parse_bq_json_schema("schema.json")
>>> print(res_schema)
[SchemaField(u'event_id', u'INTEGER', u'REQUIRED', None, ()), SchemaField(u'event_name', u'STRING', u'REQUIRED', None, ()), SchemaField(u'event_types', u'STRING', u'REPEATED', None, ()), SchemaField(u'product_code', u'STRING', u'REQUIRED', None, ()), SchemaField(u'product_sub_code', u'STRING', u'REPEATED', None, ()), SchemaField(u'source', u'RECORD', u'REQUIRED', None, (SchemaField(u'internal', u'RECORD', u'NULLABLE', None, (SchemaField(u'name', u'STRING', u'REQUIRED', None, ()), SchemaField(u'timestamp', u'TIMESTAMP', u'REQUIRED', None, ()))), SchemaField(u'external', u'RECORD', u'NULLABLE', None, (SchemaField(u'name', u'STRING', u'REQUIRED', None, ()), SchemaField(u'timestamp', u'TIMESTAMP', u'REQUIRED', None, ()))))), SchemaField(u'timestamp', u'TIMESTAMP', u'REQUIRED', None, ()), SchemaField(u'user_key', u'RECORD', u'REQUIRED', None, (SchemaField(u'device_id', u'STRING', u'NULLABLE', None, ()), SchemaField(u'cookie_id', u'STRING', u'NULLABLE', None, ()), SchemaField(u'profile_id', u'STRING', u'NULLABLE', None, ()), SchemaField(u'best_id', u'STRING', u'REQUIRED', None, ()))), SchemaField(u'message_id', u'STRING', u'REQUIRED', None, ()), SchemaField(u'message_type', u'STRING', u'REQUIRED', None, ()), SchemaField(u'tracking_id', u'STRING', u'NULLABLE', None, ()), SchemaField(u'funnel_stage', u'STRING', u'NULLABLE', None, ()), SchemaField(u'location', u'RECORD', u'NULLABLE', None, (SchemaField(u'latitude', u'FLOAT', u'REQUIRED', None, ()), SchemaField(u'longitude', u'FLOAT', u'REQUIRED', None, ()), SchemaField(u'geo_region_id', u'INTEGER', u'NULLABLE', None, ()))), SchemaField(u'campaign_id', u'STRING', u'NULLABLE', None, ()), SchemaField(u'topic', u'STRING', u'REQUIRED', None, ())]
这最终创建了表:
dataset_ref = bqclient.dataset('YOUR_DATASET')
table_ref = dataset_ref.table('YOUR_TABLE')
table = bigquery.Table(table_ref, schema=res_schema)
答案 4 :(得分:0)
这是一个可以帮助您的简单程序。
import json
from apache_beam.io.gcp.internal.clients import bigquery
def bq_schema(json_schema):
table_schema = bigquery.TableSchema()
with open(json_schema) as json_file:
data = json.load(json_file)
for p in data:
field = bigquery.TableFieldSchema()
field.name = p['name']
field.type = p['type']
field.mode = p['mode']
table_schema.fields.append(field)
return table_schema
答案 5 :(得分:0)
现在,您可以使用内置的parse_table_schema_from_json函数:
from apache_beam.io.gcp.bigquery_tools import parse_table_schema_from_json
with open('schema.json') as f:
schema_string = f.read()
table_schema = parse_table_schema_from_json(schema_string)