我有这个样本:
import pandas as pd
import numpy as np
dic = {'name':
['j','c','q','j','c','q','j','c','q'],
'foo or bar':['foo','bar','bar','bar','foo','foo','bar','foo','foo'],
'amount':[10,20,30, 20,30,40, 200,300,400]}
x = pd.DataFrame(dic)
x
pd.pivot_table(x,
values='amount',
index='name',
columns='foo or bar',
aggfunc=[np.mean, np.sum])
它返回:
我想要突出显示的列。为什么我不能像这样在aggfunc参数中指定元组?
pd.pivot_table(x,
values='amount',
index='name',
columns='foo or bar',
aggfunc=[(np.mean, 'bar'), (np.sum, 'foo')])
使用此处.ix
(define aggfunc for each values column in pandas pivot table)是唯一的选择吗?
答案 0 :(得分:2)
我认为您无法为aggfunc
参数指定元组,但您可以执行以下操作:
In [259]: p = pd.pivot_table(x,
.....: values='amount',
.....: index='name',
.....: columns='foo or bar',
.....: aggfunc=[np.mean, np.sum])
In [260]: p
Out[260]:
mean sum
foo or bar bar foo bar foo
name
c 20 165 20 330
j 110 10 220 10
q 30 220 30 440
In [261]: p.columns = ['{0[0]}_{0[1]}'.format(col) if col[1] else col[0] for col in p.columns.tolist()]
In [262]: p.columns
Out[262]: Index(['mean_bar', 'mean_foo', 'sum_bar', 'sum_foo'], dtype='object')
In [264]: p[['mean_bar','sum_foo']]
Out[264]:
mean_bar sum_foo
name
c 20 330
j 110 10
q 30 440
答案 1 :(得分:2)
为了能够在您提供的答案中执行此操作,您需要为此创建适当的列。你可以这样做:
x['foo'] = x.loc[x['foo or bar'] == 'foo', 'amount']
x['bar'] = x.loc[x['foo or bar'] == 'bar', 'amount']
In [81]: x
Out[81]:
amount foo or bar name foo bar
0 10 foo j 10.0 NaN
1 20 bar c NaN 20.0
2 30 bar q NaN 30.0
3 20 bar j NaN 20.0
4 30 foo c 30.0 NaN
5 40 foo q 40.0 NaN
6 200 bar j NaN 200.0
7 300 foo c 300.0 NaN
8 400 foo q 400.0 NaN
然后你可以使用以下内容:
In [82]: x.pivot_table(values=['foo','bar'], index='name', aggfunc={'bar':np.mean, 'foo':sum})
Out[82]:
bar foo
name
c 20.0 330.0
j 110.0 10.0
q 30.0 440.0