我试图通过计算梯度幅度图像的一些统计数据来设置两个Canny阈值(这似乎是一个更好的事情而不是像灰度图像那样计算阈值(如Otsu),就像许多人似乎一样,这些阈值与阈值实际应用于的梯度幅度图像的值有很大差异。然而,计算的阈值需要从完全相同的梯度幅度图像计算,Canny最终在内部进行阈值处理,或者结果不会如预期的那样。也就是说,cv::canny
在内部进行一些平滑(其参数未暴露),应用Sobel算子,执行快速或完整的梯度幅度计算等,然后在执行之前应用用户指定的阈值。在计算我的统计数据之前,我必须在外部执行完全相同的步骤,以便我传递给cv::canny
的阈值实际上是有意义的。
有没有办法访问算法中使用的图像?
答案 0 :(得分:1)
您无法直接获取OpenCV Canny
函数的内部状态,但您可以提取OpenCV代码并创建自己的函数。
这是一个自动选择Canny阈值的函数(基于egonSchiele implementation)。
请注意,在此功能中:
将输出Sobel渐变sobel_x
和sobel_y
的结果,因此您可以避免使用Sobel
重新计算它,以防您以后想要处理图像渐变。 (如果不需要,你可以轻松地重构它)
此代码始终使用L1渐变来计算统计信息。然后根据输入参数使用L1或L2进行实际幅度计算。
此处幻数是固定的。您可以轻松地重构代码以将它们作为输入参数传递。这些神奇的数字是:
NUM_BINS
:用于计算统计数据的直方图的区间数percent_of_pixels_not_edges
:估算更高的Canny阈值threshold_ratio
:恢复较低的Canny阈值。关于在灰度图像上使用Otsu来恢复Canny阈值......嗯,它对我来说没有多大意义,因为"灰度"图像和"梯度幅度"图像具有不同的语义和值范围。
代码:
#include<opencv2/opencv.hpp>
using namespace cv;
// Based on https://gist.github.com/egonSchiele/756833
void cvCanny3(const void* srcarr, void* dstarr,
void* dxarr, void* dyarr,
int aperture_size)
{
cv::AutoBuffer<char> buffer;
std::vector<uchar*> stack;
uchar **stack_top = 0, **stack_bottom = 0;
CvMat srcstub, *src = cvGetMat(srcarr, &srcstub);
CvMat dststub, *dst = cvGetMat(dstarr, &dststub);
CvMat dxstub, *dx = cvGetMat(dxarr, &dxstub);
CvMat dystub, *dy = cvGetMat(dyarr, &dystub);
CvSize size;
int flags = aperture_size;
int low, high;
int* mag_buf[3];
uchar* map;
ptrdiff_t mapstep;
int maxsize;
int i, j;
CvMat mag_row;
if (CV_MAT_TYPE(src->type) != CV_8UC1 ||
CV_MAT_TYPE(dst->type) != CV_8UC1 ||
CV_MAT_TYPE(dx->type) != CV_16SC1 ||
CV_MAT_TYPE(dy->type) != CV_16SC1)
CV_Error(CV_StsUnsupportedFormat, "");
if (!CV_ARE_SIZES_EQ(src, dst))
CV_Error(CV_StsUnmatchedSizes, "");
aperture_size &= INT_MAX;
if ((aperture_size & 1) == 0 || aperture_size < 3 || aperture_size > 7)
CV_Error(CV_StsBadFlag, "");
size.width = src->cols;
size.height = src->rows;
//aperture_size = -1; //SCHARR
cvSobel(src, dx, 1, 0, aperture_size);
cvSobel(src, dy, 0, 1, aperture_size);
//% Calculate Magnitude of Gradient
//magGrad = hypot(dx, dy);
Mat1f magGrad(size.height, size.width, 0.f);
float maxGrad(0);
float val(0);
for (i = 0; i<size.height; ++i)
{
float* _pmag = magGrad.ptr<float>(i);
const short* _dx = (short*)(dx->data.ptr + dx->step*i);
const short* _dy = (short*)(dy->data.ptr + dy->step*i);
for (j = 0; j<size.width; ++j)
{
val = float(abs(_dx[j]) + abs(_dy[j]));
_pmag[j] = val;
maxGrad = (val > maxGrad) ? val : maxGrad;
}
}
//% Normalize for threshold selection
//normalize(magGrad, magGrad, 0.0, 1.0, NORM_MINMAX);
//% Determine Hysteresis Thresholds
// -------------------------------------------------
//% Set magic numbers
const int NUM_BINS = 64;
const double percent_of_pixels_not_edges = 0.9;
const double threshold_ratio = 0.25;
// -------------------------------------------------
//% Compute histogram
int bin_size = cvFloor(maxGrad / float(NUM_BINS) + 0.5f) + 1;
if (bin_size < 1) bin_size = 1;
int bins[NUM_BINS] = { 0 };
for (i = 0; i<size.height; ++i)
{
float *_pmag = magGrad.ptr<float>(i);
for (j = 0; j<size.width; ++j)
{
int hgf = int(_pmag[j]);
bins[int(_pmag[j]) / bin_size]++;
}
}
//% Select the thresholds
float total(0.f);
float target = float(size.height * size.width * percent_of_pixels_not_edges);
int low_thresh, high_thresh(0);
while (total < target)
{
total += bins[high_thresh];
high_thresh++;
}
high_thresh *= bin_size;
low_thresh = cvFloor(threshold_ratio * float(high_thresh));
if (flags & CV_CANNY_L2_GRADIENT)
{
Cv32suf ul, uh;
ul.f = (float)low_thresh;
uh.f = (float)high_thresh;
low = ul.i;
high = uh.i;
}
else
{
low = cvFloor(low_thresh);
high = cvFloor(high_thresh);
}
buffer.allocate((size.width + 2)*(size.height + 2) + (size.width + 2) * 3 * sizeof(int));
mag_buf[0] = (int*)(char*)buffer;
mag_buf[1] = mag_buf[0] + size.width + 2;
mag_buf[2] = mag_buf[1] + size.width + 2;
map = (uchar*)(mag_buf[2] + size.width + 2);
mapstep = size.width + 2;
maxsize = MAX(1 << 10, size.width*size.height / 10);
stack.resize(maxsize);
stack_top = stack_bottom = &stack[0];
memset(mag_buf[0], 0, (size.width + 2)*sizeof(int));
memset(map, 1, mapstep);
memset(map + mapstep*(size.height + 1), 1, mapstep);
/* sector numbers
(Top-Left Origin)
1 2 3
* * *
* * *
0*******0
* * *
* * *
3 2 1
*/
#define CANNY_PUSH(d) *(d) = (uchar)2, *stack_top++ = (d)
#define CANNY_POP(d) (d) = *--stack_top
mag_row = cvMat(1, size.width, CV_32F);
// calculate magnitude and angle of gradient, perform non-maxima supression.
// fill the map with one of the following values:
// 0 - the pixel might belong to an edge
// 1 - the pixel can not belong to an edge
// 2 - the pixel does belong to an edge
for (i = 0; i <= size.height; i++)
{
int* _mag = mag_buf[(i > 0) + 1] + 1;
float* _magf = (float*)_mag;
const short* _dx = (short*)(dx->data.ptr + dx->step*i);
const short* _dy = (short*)(dy->data.ptr + dy->step*i);
uchar* _map;
int x, y;
ptrdiff_t magstep1, magstep2;
int prev_flag = 0;
if (i < size.height)
{
_mag[-1] = _mag[size.width] = 0;
if (!(flags & CV_CANNY_L2_GRADIENT))
for (j = 0; j < size.width; j++)
_mag[j] = abs(_dx[j]) + abs(_dy[j]);
else
{
for (j = 0; j < size.width; j++)
{
x = _dx[j]; y = _dy[j];
_magf[j] = (float)std::sqrt((double)x*x + (double)y*y);
}
}
}
else
memset(_mag - 1, 0, (size.width + 2)*sizeof(int));
// at the very beginning we do not have a complete ring
// buffer of 3 magnitude rows for non-maxima suppression
if (i == 0)
continue;
_map = map + mapstep*i + 1;
_map[-1] = _map[size.width] = 1;
_mag = mag_buf[1] + 1; // take the central row
_dx = (short*)(dx->data.ptr + dx->step*(i - 1));
_dy = (short*)(dy->data.ptr + dy->step*(i - 1));
magstep1 = mag_buf[2] - mag_buf[1];
magstep2 = mag_buf[0] - mag_buf[1];
if ((stack_top - stack_bottom) + size.width > maxsize)
{
int sz = (int)(stack_top - stack_bottom);
maxsize = MAX(maxsize * 3 / 2, maxsize + 8);
stack.resize(maxsize);
stack_bottom = &stack[0];
stack_top = stack_bottom + sz;
}
for (j = 0; j < size.width; j++)
{
#define CANNY_SHIFT 15
#define TG22 (int)(0.4142135623730950488016887242097*(1<<CANNY_SHIFT) + 0.5)
x = _dx[j];
y = _dy[j];
int s = x ^ y;
int m = _mag[j];
x = abs(x);
y = abs(y);
if (m > low)
{
int tg22x = x * TG22;
int tg67x = tg22x + ((x + x) << CANNY_SHIFT);
y <<= CANNY_SHIFT;
if (y < tg22x)
{
if (m > _mag[j - 1] && m >= _mag[j + 1])
{
if (m > high && !prev_flag && _map[j - mapstep] != 2)
{
CANNY_PUSH(_map + j);
prev_flag = 1;
}
else
_map[j] = (uchar)0;
continue;
}
}
else if (y > tg67x)
{
if (m > _mag[j + magstep2] && m >= _mag[j + magstep1])
{
if (m > high && !prev_flag && _map[j - mapstep] != 2)
{
CANNY_PUSH(_map + j);
prev_flag = 1;
}
else
_map[j] = (uchar)0;
continue;
}
}
else
{
s = s < 0 ? -1 : 1;
if (m > _mag[j + magstep2 - s] && m > _mag[j + magstep1 + s])
{
if (m > high && !prev_flag && _map[j - mapstep] != 2)
{
CANNY_PUSH(_map + j);
prev_flag = 1;
}
else
_map[j] = (uchar)0;
continue;
}
}
}
prev_flag = 0;
_map[j] = (uchar)1;
}
// scroll the ring buffer
_mag = mag_buf[0];
mag_buf[0] = mag_buf[1];
mag_buf[1] = mag_buf[2];
mag_buf[2] = _mag;
}
// now track the edges (hysteresis thresholding)
while (stack_top > stack_bottom)
{
uchar* m;
if ((stack_top - stack_bottom) + 8 > maxsize)
{
int sz = (int)(stack_top - stack_bottom);
maxsize = MAX(maxsize * 3 / 2, maxsize + 8);
stack.resize(maxsize);
stack_bottom = &stack[0];
stack_top = stack_bottom + sz;
}
CANNY_POP(m);
if (!m[-1])
CANNY_PUSH(m - 1);
if (!m[1])
CANNY_PUSH(m + 1);
if (!m[-mapstep - 1])
CANNY_PUSH(m - mapstep - 1);
if (!m[-mapstep])
CANNY_PUSH(m - mapstep);
if (!m[-mapstep + 1])
CANNY_PUSH(m - mapstep + 1);
if (!m[mapstep - 1])
CANNY_PUSH(m + mapstep - 1);
if (!m[mapstep])
CANNY_PUSH(m + mapstep);
if (!m[mapstep + 1])
CANNY_PUSH(m + mapstep + 1);
}
// the final pass, form the final image
for (i = 0; i < size.height; i++)
{
const uchar* _map = map + mapstep*(i + 1) + 1;
uchar* _dst = dst->data.ptr + dst->step*i;
for (j = 0; j < size.width; j++)
{
_dst[j] = (uchar)-(_map[j] >> 1);
}
}
};
void Canny3(InputArray image, OutputArray _edges,
OutputArray _sobel_x, OutputArray _sobel_y,
int apertureSize = 3, bool L2gradient = false)
{
Mat src = image.getMat();
_edges.create(src.size(), CV_8U);
_sobel_x.create(src.size(), CV_16S);
_sobel_y.create(src.size(), CV_16S);
CvMat c_src = src, c_dst = _edges.getMat();
CvMat c_dx = _sobel_x.getMat();
CvMat c_dy = _sobel_y.getMat();
cvCanny3(&c_src, &c_dst,
&c_dx, &c_dy,
apertureSize + (L2gradient ? CV_CANNY_L2_GRADIENT : 0));
};
int main()
{
Mat3b img = imread("path_to_image");
Mat1b gray;
cvtColor(img, gray, COLOR_BGR2GRAY);
Mat1b edges;
Mat1s sobel_x, sobel_y;
Canny3(gray, edges, sobel_x, sobel_y);
imshow("edges", edges);
waitKey();
return 0;
}