我正在尝试在RStudio中完成随机排列测试并继续得到以下两个错误: 错误:评估嵌套太深:无限递归/选项(表达式=)? 换行时出错:评估嵌套太深:无限递归/选项(表达式=)?
#create groups/data vectors
drinks = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)
mosquito = c(27, 20, 21, 26, 27, 3, 24, 21, 20, 19, 23, 24, 28, 19, 24, 29, 18, 20, 17, 31, 20, 25, 28, 21, 27, 21, 22, 15, 12, 21, 19, 15, 22, 24, 19, 23, 13, 22, 20, 24, 18, 20)
#create function
rpermut = function(group, outcome, permutation){
diff = rep(NA, permutation)
for(i in 1:permutation){
outcome = sample(outcome)
diff[i] = mean(outcome[group==levels(group)[1]]) - mean(outcome[group==levels(group)[2]])}
diff
}
#adding values to function
mosrep = rpermut(group=drinks, outcome=mosquito, permutation=1000)
我不确定错误代码是什么意思,也不知道如何解决问题,以便运行该功能。如果我在这里遇到错误,我可以提供任何帮助,我将不胜感激!
答案 0 :(得分:0)
所以它似乎对我有所改变。 首先,我假设饮料和蚊子的长度应该相同,而问题并非如此。
> length(drinks)
[1] 43
> length(mosquito)
[1] 42
其次,levels()对因子起作用,而那些对象饮料和蚊子是数字向量。
> class(drinks)
[1] "numeric"
> class(mosquito)
[1] "numeric"
因此,在我的机器上运行此功能,我必须调整功能:
rpermut = function(group, outcome, permutation){
diff = c()
group = as.factor(group)
for(i in 1:permutation){
outcome = sample(outcome)
diff[i] = mean(outcome[group==levels(group)[1]]) - mean(outcome[group==levels(group)[2]])
}
return(diff)
}
这只是将组更改为as.factor()
我还将diff = rep(NA, permutation)
更改为只创建空向量的diff = c()
。无需为所有值分配NA,因为您可以使用diff[i]
以相同的方式填充条目。
因此,向量需要长度相同,然后这应该可以工作,也可以简单地添加一个检查。
if(length(group) != length(outcome)){
stop("input vector lengths does not match!")
}
所有在一起:
rpermut = function(group, outcome, permutation){
if(length(group) != length(outcome)){
stop("input vector lengths does not match!")
}
diff = c()
group = as.factor(group)
for(i in 1:permutation){
outcome = sample(outcome)
diff[i] = mean(outcome[group==levels(group)[1]]) - mean(outcome[group==levels(group)[2]])
}
return(diff)
}