使用sframe作为数据源绘制箱线图

时间:2016-03-19 19:11:28

标签: python seaborn sframe

我在The Billionaire Characteristics Database数据集上练习我的ML分类技能。

我正在使用sframe来加载和操作数据,seaborn用于可视化。

在数据分析过程中,我想绘制一个按分类变量分组的箱形图,如seaborn教程中的这个: box plot grouped by categorical value

在数据集中,有一个networthusbillion数字变量和selfmade分类变量,用于说明亿万富翁是self-made还是({)他有inherited美元。< / p>

当我尝试使用sns.boxplot(x='selfmade', y='networthusbillion', data=data)绘制类似的方框图时,会抛出以下错误:

---------------------------------------------------------------------
AttributeError                            Traceback (most recent call last)
<ipython-input-17-f4bd651c2ae7> in <module>()
----> 1 sns.boxplot(x='selfmade', y='networthusbillion', data=billionaires)

/home/iulian/.virtualenvs/data-science-python2/lib/python2.7/site-packages/seaborn/categorical.pyc in boxplot(x, y, hue, data, order, hue_order, orient, color, palette, saturation, width, fliersize, linewidth, whis, notch, ax, **kwargs)
   2127     plotter = _BoxPlotter(x, y, hue, data, order, hue_order,
   2128                           orient, color, palette, saturation,
-> 2129                           width, fliersize, linewidth)
   2130 
   2131     if ax is None:

/home/iulian/.virtualenvs/data-science-python2/lib/python2.7/site-packages/seaborn/categorical.pyc in __init__(self, x, y, hue, data, order, hue_order, orient, color, palette, saturation, width, fliersize, linewidth)
    420                  width, fliersize, linewidth):
    421 
--> 422         self.establish_variables(x, y, hue, data, orient, order, hue_order)
    423         self.establish_colors(color, palette, saturation)
    424 

/home/iulian/.virtualenvs/data-science-python2/lib/python2.7/site-packages/seaborn/categorical.pyc in establish_variables(self, x, y, hue, data, orient, order, hue_order, units)
    136             # See if we need to get variables from `data`
    137             if data is not None:
--> 138                 x = data.get(x, x)
    139                 y = data.get(y, y)
    140                 hue = data.get(hue, hue)

AttributeError: 'SFrame' object has no attribute 'get'

我尝试了以下表格来绘制方块图 - 它们都没有达到结果:

sns.boxplot(x=billionaires['selfmade'], y=billionaires['networthusbillion'])
sns.boxplot(x='selfmade', y='networthusbillion', data=billionaires['selfmade', 'networthusbillion'])

但是,我可以使用sframe绘制一个方框图,但不按selfmade分组:

sns.boxplot(x=billionaires['networthusbillion'])

所以,我的问题是:有没有办法使用sframe绘制按分类变量分组的箱形图?也许我做错了什么?

顺便说一句,我设法使用pandas.DataFrame使用相同的语法(sns.boxplot(x='selfmade', y='networthusbillion', data=data))绘制它,因此可能使用sframeseaborn进行分组已实施。

2 个答案:

答案 0 :(得分:0)

问题在于sns.boxplot期望数据具有像{Pandas&#39;}这样的get方法。数据帧。在Pandas中,get方法返回单个列,因此它与括号索引相同,即your_df['your_column_name']

解决此问题的最简单方法是在sframe上调用to_dataframe方法将其转换为数据框。

sns.boxplot(x='selfmade', y='networthusbillion', data=data.to_dataframe())

或者,您可以通过编写类包装器或使用monkey-patching get到SFrame类来解决问题。

import numpy as np
import sframe
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

# For demostration purposes
def to_sframe(df):
    import sframe
    d = {}
    for key in df.keys():
        d[key] = list(df[key])
    return sframe.SFrame(d)
pd.DataFrame.to_sframe = to_sframe

tips = sns.load_dataset('tips')

# Monkey patch sframe's get and _CategoricalPlotter's _group_longform
def get(self, *args):
    key = args[0]
    return self.__getitem__(key) if key else None
sframe.SFrame.get = get


def _group_longform(self, vals, grouper, order):
    """Group a long-form variable by another with correct order."""
    #import pdb;pdb.set_trace()

    if type(vals) == sframe.SArray:
        _sf = sframe.SFrame({'vals':vals, 'grouper':grouper})
        grouped_vals = _sf.groupby('grouper', sframe.aggregate.CONCAT('vals'))
        out_data = []
        for g in order:
            try:
                g_vals = np.asarray(grouped_vals.filter_by(g, 'grouper')["List of vals"][0])
            except KeyError:
                g_vals = np.array([])
            out_data.append(g_vals)
        label = ""
        return out_data, label

    ## Code copied from original _group_longform
    # Ensure that the groupby will work
    if not isinstance(vals, pd.Series):
        vals = pd.Series(vals)

    # Group the val data
    grouped_vals = vals.groupby(grouper)
    out_data = []
    for g in order:
        try:
            g_vals = np.asarray(grouped_vals.get_group(g))
        except KeyError:
            g_vals = np.array([])
        out_data.append(g_vals)

    # Get the vals axis label
    label = vals.name

    return out_data, label

sns.categorical._CategoricalPlotter._group_longform = _group_longform


# Plots should be equivalent
#1.
plt.figure()
sns.boxplot(x="day", y="total_bill", data=tips)
#2.
plt.figure()
sns.boxplot(x="day", y="total_bill", data=tips.to_sframe(),
            order=["Thur", "Fri", "Sat", "Sun"])
plt.xlabel("day")
plt.ylabel("total_bill")

plt.show()

答案 1 :(得分:0)

TL; DR

使用sframeseaborn进行分组尚未实施。

在深入了解seaborn的源代码后,我发现它专门设计用于pandas.DataFrame。在他们的回答中采用绝对无保证的建议,我得到以下错误:

TypeError: __getitem__() takes exactly 2 arguments (3 given)

看一下args电话中的get,有以下数据:

('gender', 'gender')

这是因为BoxPlot的源代码中的代码:

# See if we need to get variables from `data`
if data is not None:
    x = data.get(x, x)
    y = data.get(y, y)
    hue = data.get(hue, hue)
    units = data.get(units, units)

它尝试获取值并使用相同的值作为后备,以防它不存在。这会导致__getitem__()出错,因为它会被(self, 'gender', 'gender')个参数调用。

我尝试重写get()函数,如下所示:

def get(self, *args):
    return self.__getitem__(args[0]) if args[0] else None  # The `None` is here because the `units` in the source code is `None` for boxplots.

在这里,我收到了错误,结束了我的尝试:

TypeError: 'SArray' object is not callable

查看源代码,它会检查y数据是否为pd.Series,如果不是,则将y值转换为1:

if not isinstance(vals, pd.Series):
    vals = pd.Series(vals)

# Group the val data
grouped_vals = vals.groupby(grouper)

当执行vals.groupby(grouper)(石斑鱼仍然是SArray实例)时,它会进入pandas核心工作区,其中调用SArray并抛出错误。故事结束。