奇怪的ROC曲线预测

时间:2016-03-17 14:44:43

标签: roc

我有一个来自svm模型的以下预测(prediction_svm_linear),我想用R中的pROC包绘制ROC曲线。我得到AUC 100%,这是不可能的,因为基于混淆矩阵我没有&#39 ; t有完美的预测。很明显我错过了一些东西,可能我不完全理解ROC曲线是如何工作的,你能否向我解释为什么会发生这种情况?

Confusion Matrix and Statistics

      Reference
Prediction Cancer Normal
Cancer     11      0
Normal      3      5

           Accuracy : 0.8421          
             95% CI : (0.6042, 0.9662)
No Information Rate : 0.7368          
P-Value [Acc > NIR] : 0.2227          

              Kappa : 0.6587          
Mcnemar's Test P-Value : 0.2482          

        Sensitivity : 0.7857          
        Specificity : 1.0000          
     Pos Pred Value : 1.0000          
     Neg Pred Value : 0.6250          
         Prevalence : 0.7368          
     Detection Rate : 0.5789          
   Detection Prevalence : 0.5789          
   Balanced Accuracy : 0.8929          

   'Positive' Class : Cancer

这是我的代码:

library(pROC)
    testData_class = c(rep(c("Normal", "Cancer"), c(5, 14)))
    prediction_svm_linear = data.frame(Cancer = c(0.11766249, 0.04765463, 0.08749940, 0.01715765, 0.10755376, 0.28358435, 0.37478957, 0.90603193, 0.91077112, 0.68602820, 0.64783894, 0.67916187,0.38785763, 0.66440580, 0.51897036, 0.93484214, 0.91719866, 0.83239007, 0.63491027), Normal = c(0.88233751, 0.95234537, 0.91250060, 0.98284235, 0.89244624, 0.71641565, 0.62521043, 0.09396807, 0.08922888, 0.31397180, 0.35216106, 0.32083813,0.61214237, 0.33559420, 0.48102964, 0.06515786, 0.08280134, 0.16760993, 0.36508973))

    result.roc.model1 <-  roc(testData$class, prediction_svm_linear$Cancer, 
                            levels = rev(levels(testData$class)))


>result.roc.model1
Call:
roc.default(response = testData$class, predictor = prediction.prob.b5_svm_linear$Cancer,     levels = rev(levels(testData$class)))

Data: prediction.prob.b5_svm_linear$Cancer in 5 controls (testData$class Normal) < 14 cases (testData$class Cancer).
Area under the curve: 1

2 个答案:

答案 0 :(得分:1)

根据您的评论,我怀疑您滥用confusionMatrix包中的caret功能。根据文档,第二个因素应为“a factor of classes to be used as the true results”,而您的评论表明您正在传递data.frame连续预测。它不仅与所需的格式不同,而且也应该是你的第一个参数。

你应该使用这样的东西:

predictions <- ifelse(prediction_svm_linear$Cancer > 0.2, "Cancer", "Normal")
confusionMatrix(predictions, testData_class)

答案 1 :(得分:0)

抱歉,我可能会对你感到困惑,但这里有所有信息

二元预定:

prediction_svm = c("Normal", "Normal", "Normal", "Normal", "Normal", "Normal", "Normal", "Cancer", "Cancer", "Cancer", "Cancer", "Cancer", "Normal", "Cancer", "Cancer", "Cancer", "Cancer", "Cancer", "Cancer")

基本事实:

testData_class = c(rep(c("Normal", "Cancer"), c(5, 14)))

概率预测

prediction_svm_linear.prob = data.frame(Cancer = c(0.11766249, 0.04765463, 0.08749940, 0.01715765, 0.10755376, 0.28358435, 0.37478957, 0.90603193, 0.91077112, 0.68602820, 0.64783894, 0.67916187,0.38785763, 0.66440580, 0.51897036, 0.93484214, 0.91719866, 0.83239007, 0.63491027), Normal = c(0.88233751, 0.95234537, 0.91250060, 0.98284235, 0.89244624, 0.71641565, 0.62521043, 0.09396807, 0.08922888, 0.31397180, 0.35216106, 0.32083813,0.61214237, 0.33559420, 0.48102964, 0.06515786, 0.08280134, 0.16760993, 0.36508973))

我正在使用此命令构建混淆矩阵:

confusionMatrix(prediction_svm, testData$class)

library(pROC)
    result.roc.model1 <-  roc(testData$class, prediction_svm_linear.prob$Cancer, 
                            levels = rev(levels(testData$class)))


>result.roc.model1
Call:
roc.default(response = testData$class, predictor = prediction.prob.b5_svm_linear$Cancer,     levels = rev(levels(testData$class)))

Data: prediction.prob.b5_svm_linear$Cancer in 5 controls (testData$class Normal) < 14 cases (testData$class Cancer).
Area under the curve: 1


>result.coords.model1 <- coords(  result.roc.model1, "best", best.method="closest.topleft",ret=c("threshold", "accuracy"))

>result.coords.model1
threshold  accuracy 
0.2006234 1.0000000