我正在试验(学习)TensorBoard并使用我从互联网上获得的以下代码(简单回归函数)
import tensorflow as tf
import numpy as np
#sess = tf.InteractiveSession() #define a session
# Create 100 phony x, y data points in NumPy, y = x * 0.1 + 0.3
x_data = np.random.rand(100).astype("float32")
y_data = x_data * 0.1 + 0.3
# Try to find values for W and b that compute y_data = W * x_data + b
# (We know that W should be 0.1 and b 0.3, but Tensorflow will
# figure that out for us.)
with tf.name_scope("calculatematmul") as scope:
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0))
b = tf.Variable(tf.zeros([1]))
y = W * x_data + b
# Minimize the mean squared errors.
loss = tf.reduce_mean(tf.square(y - y_data))
optimizer = tf.train.GradientDescentOptimizer(0.5)
train = optimizer.minimize(loss)
# Before starting, initialize the variables. We will 'run' this first.
init = tf.initialize_all_variables()
# Launch the graph.
sess = tf.Session()
sess.run(init)
#### ----> ADD THIS LINE <---- ####
writer = tf.train.SummaryWriter('mnist_logs', sess.graph_def)
# Fit the line.
for step in xrange(201):
sess.run(train)
if step % 20 == 0:
print(step, sess.run(W), sess.run(b))
当我创建一个python文件并使用
运行该文件时,代码运行正常python test.py
它在jupyter笔记本中运行良好
然而,当Tensorboard从运行python文件获取信息时(也就是说,它创建了xyz .... home文件),交互式版本不会创建任何可用于Tensorboard的信息。
有人可以向我解释原因!
由于 彼得
答案 0 :(得分:0)
确保在启动tensorboard时使用完整路径。
tensorboard --logdir='./somedirectory/mnist_logs'