编辑:我试图通过使用他们的UUID而不是他们的ID来枚举有效的GPU,这会使事情发挥作用。
似乎它仍然看到了GT 610,尽管我认为它不应该。这就是它无法正常工作的原因。
我的一台机器上的cuda MPS有困难。
该机器有4个特斯拉K80,以及一个(编辑:)非MPS支持的GT610
这是nvidia-smi:
riveale@coiworkstation1:~/code/psweep2/src$ nvidia-smi
Tue Mar 15 23:51:59 2016
+------------------------------------------------------+
| NVIDIA-SMI 352.63 Driver Version: 352.63 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 GeForce GT 610 Off | 0000:01:00.0 N/A | N/A |
| 40% 29C P8 N/A / N/A | 3MiB / 1021MiB | N/A Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla K80 Off | 0000:04:00.0 Off | 0 |
| N/A 29C P8 26W / 149W | 55MiB / 11519MiB | 0% E. Process |
+-------------------------------+----------------------+----------------------+
| 2 Tesla K80 Off | 0000:05:00.0 Off | 0 |
| N/A 24C P8 30W / 149W | 55MiB / 11519MiB | 0% E. Process |
+-------------------------------+----------------------+----------------------+
| 3 Tesla K80 Off | 0000:08:00.0 Off | 0 |
| N/A 34C P8 27W / 149W | 55MiB / 11519MiB | 0% E. Process |
+-------------------------------+----------------------+----------------------+
| 4 Tesla K80 Off | 0000:09:00.0 Off | 0 |
| N/A 28C P8 29W / 149W | 55MiB / 11519MiB | 0% E. Process |
+-------------------------------+----------------------+----------------------+
| 5 Tesla K80 Off | 0000:84:00.0 Off | 0 |
| N/A 31C P8 28W / 149W | 55MiB / 11519MiB | 0% E. Process |
+-------------------------------+----------------------+----------------------+
| 6 Tesla K80 Off | 0000:85:00.0 Off | 0 |
| N/A 26C P8 30W / 149W | 55MiB / 11519MiB | 0% E. Process |
+-------------------------------+----------------------+----------------------+
| 7 Tesla K80 Off | 0000:88:00.0 Off | 0 |
| N/A 31C P8 26W / 149W | 55MiB / 11519MiB | 0% E. Process |
+-------------------------------+----------------------+----------------------+
| 8 Tesla K80 Off | 0000:89:00.0 Off | 0 |
| N/A 25C P8 31W / 149W | 55MiB / 11519MiB | 0% E. Process |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| 0 Not Supported |
+-----------------------------------------------------------------------------+
如您所见,我已将处理器设置为独占进程。
我可以仅使用第一个GPU运行健全性检查,启动MPS服务器等,如下所示:
export CUDA_VISIBLE_DEVICES="0"
export CUDA_MPS_PIPE_DIRECTORY=/tmp/nvidia-mps
export CUDA_MPS_LOG_DIRECTORY=/tmp/nvidia-log
nvidia-cuda-mps-control -d
然后我运行我的脚本:
NRANKS=4
mpirun -n $NRANKS gputest.exe
这成功运行,我在/tmp/nvidia-log/server.log中看到:
riveale@coiworkstation1:~/code/psweep2/src$ cat /tmp/nvidia-log/server.log
[2016-03-15 23:57:07.883 Other 6957] Start
[2016-03-15 23:57:08.513 Other 6957] New client 6956 connected
[2016-03-15 23:57:08.513 Other 6957] New client 6954 connected
[2016-03-15 23:57:08.514 Other 6957] New client 6955 connected
然而,当我尝试在系统上使用超过1个GPU时,我遇到了问题。具体来说,以下(完全相同,但现在我有2个可见的CUDA设备):
export CUDA_VISIBLE_DEVICES="0,1"
export CUDA_MPS_PIPE_DIRECTORY=/tmp/nvidia-mps
export CUDA_MPS_LOG_DIRECTORY=/tmp/nvidia-log
nvidia-cuda-mps-control -d
(ps ax | grep mps显示守护进程刚好开始,与上面的工作示例没有区别)。 其次是:
NRANKS=7
mpirun -n $NRANKS gputest.exe
我明白了:
riveale@coiworkstation1:~/code/psweep2/src$ cat /tmp/nvidia-log/server.log
[2016-03-15 23:59:55.718 Other 7102] Start
[2016-03-15 23:59:56.301 Other 7102] MPS server failed to start
[2016-03-15 23:59:56.301 Other 7102] MPS is only supported on 64-bit Linux platforms, with an SM 3.5 or higher GPU.
[2016-03-15 23:59:56.727 Other 7105] Start
[2016-03-15 23:59:57.302 Other 7105] MPS server failed to start
[2016-03-15 23:59:57.302 Other 7105] MPS is only supported on 64-bit Linux platforms, with an SM 3.5 or higher GPU.
[2016-03-15 23:59:57.718 Other 7107] Start
[2016-03-15 23:59:58.291 Other 7107] MPS server failed to start
[2016-03-15 23:59:58.291 Other 7107] MPS is only supported on 64-bit Linux platforms, with an SM 3.5 or higher GPU.
[2016-03-15 23:59:58.709 Other 7109] Start
[2016-03-15 23:59:59.236 Other 7109] MPS server failed to start
[2016-03-15 23:59:59.236 Other 7109] MPS is only supported on 64-bit Linux platforms, with an SM 3.5 or higher GPU.
[2016-03-15 23:59:59.644 Other 7111] Start
[2016-03-16 00:00:00.215 Other 7111] MPS server failed to start
[2016-03-16 00:00:00.215 Other 7111] MPS is only supported on 64-bit Linux platforms, with an SM 3.5 or higher GPU.
[2016-03-16 00:00:00.651 Other 7113] Start
[2016-03-16 00:00:01.221 Other 7113] MPS server failed to start
[2016-03-16 00:00:01.221 Other 7113] MPS is only supported on 64-bit Linux platforms, with an SM 3.5 or higher GPU.
怪异。
提前感谢您提供任何帮助/想法。
另一个奇怪的是,在我的另一个工作站上完全相同,它具有相同的设置,除了它有一个Quadro K620而不是GT610。 K620是一款CUDA设备,所以我觉得这就是问题所在。现在我是远程的,所以我无法关闭卡片以查看是否会改变问题。
答案 0 :(得分:1)
如编辑中标记的那样,解决方案是使用cc> 3.5 GPU的UUID并将CUDA_VISIBLE_DEVICES设置为该值。似乎无论出于何种原因,即使设备0正确地是K80之一,也出于某种原因将显示设备(610等)列为设备#1,而不是最后一个设备,正如我预期的那样。 p>
E.g:
footer {
bottom: 0;
left: 0;
right: 0;
position: absolute;
margin: 40px;
font-size: 2em;
}
我必须在每个节点/机器上启动上面的nvidia-cuda-mps-control -d脚本之前执行此操作。
事实证明MPS很慢(MPS服务器需要很多CPU),所以我决定不使用它。