在这个稀疏矩阵中
#include <algorithm>
#include <iostream>
#include <vector>
struct Region {
Region(int first, int count, int n):
first(first),
count(count),
n(n)
{
}
int first;
int count;
int n; // think struct Metadata
};
struct Comp
{
inline bool operator()(const Region ®ion, int index) const
{
return region.first < index;
}
inline bool operator()(int index, const Region ®ion) const
{
return index < region.first;
}
};
int main() {
std::vector<Region> regions;
regions.emplace_back(0, 10, 1);
regions.emplace_back(10, 10, 2);
regions.emplace_back(20, 10, 3);
const int lookup = 10;
auto iter = std::upper_bound(
regions.begin(),
regions.end(),
lookup,
Comp());
// yes, I omitted error checking here, with error being iter == regions.begin()
std::cout << lookup << " is in region with n = " << (iter-1)->n << std::endl;
}
如何最有效地从t?的值中减去t-1处的值?
这样可以将结果存储在矩阵D:
中library(Matrix)
m <- matrix(c(1,3,1,2,2,3,1,1,2,2,3,4,1,1,2,1,1,2), nrow = 6)
M <- sparseMatrix(i = m[,1], j = m[,2], x = m[,3], dimnames = list(expression(x1, x2, x3), expression(t1, t2, t3, t4)))
M
3 x 4 sparse Matrix of class "dgCMatrix"
t1 t2 t3 t4
x1 1 2 . .
x2 . 1 1 .
x3 1 . . 2
但这是最有效的方法吗?
使用摘要m可能效率更高吗?
P.S。:D [2,3]理想地读取&#34; 0&#34;而不是&#34;。&#34;。我怎么能得到它?
答案 0 :(得分:2)
可能有快捷方式,但一种方法是创建一个正确大小的空稀疏矩阵;
> D = Matrix(0, dim(M)[1], dim(M)[2], sparse=TRUE, dimnames=dimnames(M))
# 3 x 4 sparse Matrix of class "dgCMatrix"
# t1 t2 t3 t4
# x1 . . . .
# x2 . . . .
# x3 . . . .
...并填充差异;
> D[,2:ncol(D)] = M[,2:ncol(M)] - M[,1:ncol(M)-1]
# 3 x 4 sparse Matrix of class "dgCMatrix"
# t1 t2 t3 t4
# x1 . 1 -2 .
# x2 . 1 . -1
# x3 . -1 . 2
答案 1 :(得分:2)
另一个选择是cbind
第一个空列:
empty_col_1 <- Matrix(0, nrow = nrow(M), ncol = 1,
dimnames = list(NULL, "t1"))
D <- cbind(empty_col_1, M[, -1] - M[, -ncol(M)])