我的数据集中有一个名为“Market.Pair”的列,其中包含有关某些航班的出发地和目的地点的信息。例如:
input <- data.frame(Market.Pair = c("US to/from CA", "HOU to/from DFW/DAL", "EWR/JFK to/from LAX/SFO", "US-NYC to/from FR-PAR", "US to/from Asia"))
input
所有两个字母的单词代表国家(例如美国,加州)。 所有三个字母单词(或由“/”分隔的多个三个字母单词)代表机场(例如HOU,DFW / DAL)。 所有XX-XXX形式的单词代表城市(例如US-NYC)。 其他词代表地区,如亚洲或欧洲。
我想将此列拆分为多个列:
output<- data.frame(Air.1 = c("HOU", "EWR/JFK", "", "", ""), Air.2 = c("DFW/DAL", "LAX/SFO", "", "", ""), City.1 = c("","","US-NYC", "", ""), City.2 = c("","","FR-PAR", "", ""), Country.1 = c("","","","US", "US"), Coutry.2 = c("","","","CA", ""), Region.1 = c("","","", "", "Asia"), Region.2 = c("","","", "", ""))
output
我是regex的新手,所以任何帮助都会非常感激!
答案 0 :(得分:4)
这是一种相当手动的方法,但它应该仍然非常有效。它使用我的&#34; splitstackshape&#34;中的cSplit
。用于拆分列的包,然后使用&#34; data.table&#34;按条件子集。通过引用创建新值。最后,它使用dcast
(再次来自&#34; data.table&#34;)进入宽幅格式。
这里有一些新的示例数据,其中包含您在评论中描述的条件。
input <- data.frame(
Market.Pair = c(
"US to/from CA", "HOU to/from DFW/DAL", # Your sample data
"EWR/JFK to/from LAX/SFO",
"US-NYC to/from FR-PAR", "US to/from Asia",
"Latin America/Mexico to EMEA/India", # Some only "to", exception to "/"
"EWR to HKG/NRT, JFK to HKG")) # Some > 1 pair of values per row
这是一种可能的方法:
library(splitstackshape)
## First, take care of data combined in single rows
x <- cSplit(input, "Market.Pair", ",", "long")
## Add indicator for row names
x[, rn := 1:nrow(x)]
## Split on to/from or to
x <- cSplit(x, "Market.Pair", " to/from | to ", "long", fixed = FALSE,
stripWhite = FALSE, type.convert = FALSE)
## Add a column named "type" filled with 'Region' as the value
x[, type := "Region"]
## Using your defined conditions, you can replace the values in the
## 'type' column by reference. Here's 'Air'...
x[nchar(Market.Pair) == 3 | grepl("^.../...$", Market.Pair), type := "Air"]
## ... here's 'Country'
x[nchar(Market.Pair) == 2, type := "Country"]
## ... and here's 'City'
x[grepl("^..-...$", Market.Pair), type := "City"]
## Add an indicator variable...
x[, ind := sequence(.N), by = .(rn, type)]
现在,您可以使用来自&#34; data.table&#34;
的dcast
将数据重新整形为宽幅。
dcast(x, rn ~ type + ind, value.var = "Market.Pair", fill = "")
# rn Air_1 Air_2 City_1 City_2 Country_1 Country_2 Region_1 Region_2
# 1: 1 US CA
# 2: 2 HOU DFW/DAL
# 3: 3 EWR/JFK LAX/SFO
# 4: 4 US-NYC FR-PAR
# 5: 5 US Asia
# 6: 6 Latin America/Mexico EMEA/India
# 7: 7 EWR HKG/NRT
# 8: 8 JFK HKG
答案 1 :(得分:3)
input <- data.frame(Market.Pair = c("US to/from CA", "HOU to/from DFW/DAL",
"EWR/JFK to/from LAX/SFO", "US-NYC to/from FR-PAR",
"US to EMEA/India"))
sp <- strsplit(as.character(input$Market.Pair), '\\s+to(/from)?\\s+')
f <- Vectorize(function(x)
if (grepl('\\-', x)) 'City' else if (nchar(x) == 2) 'Country' else
if (grepl('^[A-Z]+/[A-Z]+$|^[A-Z]+$', x)) 'Air' else 'Region')
dd <- lapply(sp, function(x) {
## set up output matrix
cn <- sort(levels(interaction(c('Air','City','Country','Region'), 1:2)))
m <- matrix('', 1, length(cn), dimnames = list(NULL, cn))
## use f above and add the suffix
xx <- f(x)
nn <- setNames(x, paste(xx, ave(xx, xx, FUN = seq_along), sep = '.'))
## match
m[, names(nn)] <- nn
m
})
do.call('rbind.data.frame', dd)
# Air.1 Air.2 City.1 City.2 Country.1 Country.2 Region.1 Region.2
# 1 US CA
# 2 HOU DFW/DAL
# 3 EWR/JFK LAX/SFO
# 4 US-NYC FR-PAR
# 5 US EMEA/India