我正面临着一个问题,我现在已经很久没能解决这个问题了。
我在Spark 1.4和Scala 2.10上。此时我无法升级(大型分布式基础架构)
我有一个包含几百列的文件,其中只有两列是字符串,其余都是Long。我想将此数据转换为标签/功能数据框。
我已经能够将它变成LibSVM格式。
我无法将其转换为标签/功能格式。
原因是
我无法使用此处所示的toDF() https://spark.apache.org/docs/1.5.1/ml-ensembles.html
val data = MLUtils.loadLibSVMFile(sc, "data/mllib/sample_libsvm_data.txt").toDF()
它在1.4
所以我首先将txtFile转换为DataFrame,我使用了这样的东西
def getColumnDType(columnName:String):StructField = {
if((columnName== "strcol1") || (columnName== "strcol2"))
return StructField(columnName, StringType, false)
else
return StructField(columnName, LongType, false)
}
def getDataFrameFromTxtFile(sc: SparkContext,staticfeatures_filepath: String,schemaConf: String) : DataFrame = {
val sfRDD = sc.textFile(staticfeatures_filepath)//
val sqlContext = new org.apache.spark.sql.SQLContext(sc)
// reads a space delimited string from application.properties file
val schemaString = readConf(Array(schemaConf)).get(schemaConf).getOrElse("")
// Generate the schema based on the string of schema
val schema =
StructType(
schemaString.split(" ").map(fieldName => getSFColumnDType(fieldName)))
val data = sfRDD
.map(line => line.split(","))
.map(p => Row.fromSeq(p.toSeq))
var df = sqlContext.createDataFrame(data, schema)
//schemaString.split(" ").drop(4)
//.map(s => df = convertColumn(df, s, "int"))
return df
}
当我使用此返回的数据帧执行df.na.drop() df.printSchema()
时,我会得到完美的架构
root
|-- rand_entry: long (nullable = false)
|-- strcol1: string (nullable = false)
|-- label: long (nullable = false)
|-- strcol2: string (nullable = false)
|-- f1: long (nullable = false)
|-- f2: long (nullable = false)
|-- f3: long (nullable = false)
and so on till around f300
但是 - 令人伤心的部分是我尝试用df做的任何事情(见下文),我总是得到一个ClassCastException(java.lang.String不能强制转换为java.lang.Long)
val featureColumns = Array("f1","f2",....."f300")
assertEquals(-99,df.select("f1").head().getLong(0))
assertEquals(-99,df.first().get(4))
val transformeddf = new VectorAssembler()
.setInputCols(featureColumns)
.setOutputCol("features")
.transform(df)
所以 - 糟糕的是 - 即使模式显示为Long - df仍然在内部将所有内容都视为字符串。
修改
添加一个简单的例子
说我有这样的文件
1,A,20,P,-99,1,0,0,8,1,1,1,1,131153
1,B,23,P,-99,0,1,0,7,1,1,0,1,65543
1,C,24,P,-99,0,1,0,9,1,1,1,1,262149
1,D,7,P,-99,0,0,0,8,1,1,1,1,458759
和
sf-schema=f0 strCol1 f1 strCol2 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11
(列名无关紧要因此您可以忽略此细节)
我要做的就是创建一个Label / Features类型的数据框,其中我的第3列成为标签,第5到第11列成为要素[Vector]列。这样我就可以按照https://spark.apache.org/docs/latest/ml-classification-regression.html#tree-ensembles中的其他步骤进行操作了。
我已按照零323
的建议投射列val types = Map("strCol1" -> "string", "strCol2" -> "string")
.withDefault(_ => "bigint")
df = df.select(df.columns.map(c => df.col(c).cast(types(c)).alias(c)): _*)
df = df.drop("f0")
df = df.drop("strCol1")
df = df.drop("strCol2")
但断言和VectorAssembler仍然失败。 featureColumns = Array(" f2"," f3",....." f11") 这是我拥有自己的df后要做的整个序列
var transformeddf = new VectorAssembler()
.setInputCols(featureColumns)
.setOutputCol("features")
.transform(df)
transformeddf.show(2)
transformeddf = new StringIndexer()
.setInputCol("f1")
.setOutputCol("indexedF1")
.fit(transformeddf)
.transform(transformeddf)
transformeddf.show(2)
transformeddf = new VectorIndexer()
.setInputCol("features")
.setOutputCol("indexedFeatures")
.setMaxCategories(5)
.fit(transformeddf)
.transform(transformeddf)
来自ScalaIDE的异常跟踪 - 就在它击中VectorAssembler时如下
java.lang.ClassCastException: java.lang.String cannot be cast to java.lang.Long
at scala.runtime.BoxesRunTime.unboxToLong(BoxesRunTime.java:110)
at scala.math.Numeric$LongIsIntegral$.toDouble(Numeric.scala:117)
at org.apache.spark.sql.catalyst.expressions.Cast$$anonfun$castToDouble$5.apply(Cast.scala:364)
at org.apache.spark.sql.catalyst.expressions.Cast$$anonfun$castToDouble$5.apply(Cast.scala:364)
at org.apache.spark.sql.catalyst.expressions.Cast.eval(Cast.scala:436)
at org.apache.spark.sql.catalyst.expressions.Alias.eval(namedExpressions.scala:118)
at org.apache.spark.sql.catalyst.expressions.CreateStruct$$anonfun$eval$2.apply(complexTypes.scala:75)
at org.apache.spark.sql.catalyst.expressions.CreateStruct$$anonfun$eval$2.apply(complexTypes.scala:75)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
at scala.collection.AbstractTraversable.map(Traversable.scala:105)
at org.apache.spark.sql.catalyst.expressions.CreateStruct.eval(complexTypes.scala:75)
at org.apache.spark.sql.catalyst.expressions.CreateStruct.eval(complexTypes.scala:56)
at org.apache.spark.sql.catalyst.expressions.ScalaUdf$$anonfun$2.apply(ScalaUdf.scala:72)
at org.apache.spark.sql.catalyst.expressions.ScalaUdf$$anonfun$2.apply(ScalaUdf.scala:70)
at org.apache.spark.sql.catalyst.expressions.ScalaUdf.eval(ScalaUdf.scala:960)
at org.apache.spark.sql.catalyst.expressions.Alias.eval(namedExpressions.scala:118)
at org.apache.spark.sql.catalyst.expressions.InterpretedMutableProjection.apply(Projection.scala:68)
at org.apache.spark.sql.catalyst.expressions.InterpretedMutableProjection.apply(Projection.scala:52)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$$anon$10.next(Iterator.scala:312)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
at scala.collection.AbstractIterator.to(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$3.apply(SparkPlan.scala:143)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$3.apply(SparkPlan.scala:143)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1767)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1767)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:63)
at org.apache.spark.scheduler.Task.run(Task.scala:70)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
答案 0 :(得分:8)
你得到ClassCastException
,因为这正是应该发生的事情。 Schema参数不用于自动转换(某些DataSources
可能以这种方式使用模式,但不使用createDataFrame
之类的方法。它只声明存储在行中的值的类型。您有责任传递与架构匹配的数据,而不是相反。
虽然DataFrame
显示了模式,但您已声明它仅在运行时验证,因此运行时异常。如果您想将数据转换为特定数据,则显式拥有cast
数据。
首先将所有列都读为StringType
:
val rows = sc.textFile(staticfeatures_filepath)
.map(line => Row.fromSeq(line.split(",")))
val schema = StructType(
schemaString.split(" ").map(
columnName => StructField(columnName, StringType, false)
)
)
val df = sqlContext.createDataFrame(rows, schema)
接下来将所选列投射到所需类型:
import org.apache.spark.sql.types.{LongType, StringType}
val types = Map("strcol1" -> StringType, "strcol2" -> StringType)
.withDefault(_ => LongType)
val casted = df.select(df.columns.map(c => col(c).cast(types(c)).alias(c)): _*)
使用汇编程序:
val transformeddf = new VectorAssembler()
.setInputCols(featureColumns)
.setOutputCol("features")
.transform(casted)
您可以使用spark-csv
简单地执行步骤1和步骤2:
// As originally
val schema = StructType(
schemaString.split(" ").map(fieldName => getSFColumnDType(fieldName)))
val df = sqlContext
.read.schema(schema)
.format("com.databricks.spark.csv")
.option("header", "false")
.load(staticfeatures_filepath)