我尝试在Azure ML Studio笔记本中执行以下代码:
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_auc_score
from sklearn.cross_validation import KFold, cross_val_score
for C in np.linspace(0.01, 0.2, 30):
cv = KFold(n=X_train.shape[0], n_folds=7, shuffle=True, random_state=12345)
clf = LogisticRegression(C=C, random_state=12345)
print C, sum(cross_val_score(clf, X_train_scaled, y_train, scoring='roc_auc', cv=cv, n_jobs=2)) / 7.0
我收到此错误:
Failed to save <type 'numpy.ndarray'> to .npy file:
Traceback (most recent call last):
File "/home/nbcommon/env/lib/python2.7/site-packages/sklearn/externals/joblib/numpy_pickle.py", line 271, in save
obj, filename = self._write_array(obj, filename)
File "/home/nbcommon/env/lib/python2.7/site-packages/sklearn/externals/joblib/numpy_pickle.py", line 231, in _write_array
self.np.save(filename, array)
File "/home/nbcommon/env/lib/python2.7/site-packages/numpy/lib/npyio.py", line 491, in save
pickle_kwargs=pickle_kwargs)
File "/home/nbcommon/env/lib/python2.7/site-packages/numpy/lib/format.py", line 585, in write_array
array.tofile(fp)
IOError: 19834920 requested and 8384502 written
---------------------------------------------------------------------------
IOError Traceback (most recent call last)
<ipython-input-29-9740e9942629> in <module>()
6 cv = KFold(n=X_train.shape[0], n_folds=7, shuffle=True, random_state=12345)
7 clf = LogisticRegression(C=C, random_state=12345)
----> 8 print C, sum(cross_val_score(clf, X_train_scaled, y_train, scoring='roc_auc', cv=cv, n_jobs=2)) / 7.0
/home/nbcommon/env/lib/python2.7/site-packages/sklearn/cross_validation.pyc in cross_val_score(estimator, X, y, scoring, cv, n_jobs, verbose, fit_params, pre_dispatch)
1431 train, test, verbose, None,
1432 fit_params)
-> 1433 for train, test in cv)
1434 return np.array(scores)[:, 0]
1435
/home/nbcommon/env/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in __call__(self, iterable)
808 # consumption.
809 self._iterating = False
--> 810 self.retrieve()
811 # Make sure that we get a last message telling us we are done
812 elapsed_time = time.time() - self._start_time
/home/nbcommon/env/lib/python2.7/site-packages/sklearn/externals/joblib/parallel.pyc in retrieve(self)
725 job = self._jobs.pop(0)
726 try:
--> 727 self._output.extend(job.get())
728 except tuple(self.exceptions) as exception:
729 # Stop dispatching any new job in the async callback thread
/home/nbcommon/env/lib/python2.7/multiprocessing/pool.pyc in get(self, timeout)
565 return self._value
566 else:
--> 567 raise self._value
568
569 def _set(self, i, obj):
IOError: [Errno 28] No space left on device
使用n_jobs=1
它可以正常工作。
我认为这是因为joblib
库试图将我的数据保存到/dev/shm
。问题是它只有64M容量:
Filesystem Size Used Avail Use% Mounted on
none 786G 111G 636G 15% /
tmpfs 56G 0 56G 0% /dev
shm 64M 0 64M 0% /dev/shm
tmpfs 56G 0 56G 0% /sys/fs/cgroup
/dev/mapper/crypt 786G 111G 636G 15% /etc/hosts
我无法通过设置JOBLIB_TEMP_FOLDER
环境变量(export
无效)来更改此文件夹。
In [35]: X_train_scaled.nbytes
Out[35]: 158679360
感谢您的任何建议!
答案 0 :(得分:1)
/dev/shm
是一个虚拟文件系统,用于在Linux上实现传统共享内存的程序之间传递数据。
因此,您无法通过在应用程序布局上设置一些选项来增加它。
但是,例如,您可以使用/dev/shm
之类的管理员权限在Linux Shell中重新安装8G大小的root
,如下所示。
mount -o remount,size=8G /dev/shm
但是,似乎Azure ML studio不支持通过SSH协议进行远程访问,因此如果目前使用免费套餐,可行的计划是升级标准层。