TensorFlow:训练时参数不会更新

时间:2016-03-12 18:09:20

标签: python ocr tensorflow

我正在使用TensorFlow实现分类模型

我遇到的问题是,当我运行训练步骤时,我的体重和错误没有得到更新。结果,我的网络不断返回相同的结果。

我已根据TensorFlow网站上的MNIST example开发了我的模型。

import numpy as np
import tensorflow as tf
sess = tf.InteractiveSession()

#load dataset
dataset = np.loadtxt('char8k.txt', dtype='float', comments='#', delimiter=",")
Y = np.asmatrix( dataset[:,0] ) 
X = np.asmatrix( dataset[:,1:1201] )

m = 11527
labels = 26

# y is update to 11527x26
Yt = np.zeros((m,labels))

for i in range(0,m):
    index = Y[0,i] - 1
    Yt[i,index]= 1

Y = Yt
Y = np.asmatrix(Y)

#------------------------------------------------------------------------------

#graph settings

x = tf.placeholder(tf.float32, shape=[None, 1200])
y_ = tf.placeholder(tf.float32, shape=[None, 26])


Wtest = tf.Variable(tf.truncated_normal([1200,26], stddev=0.001))
W = tf.Variable(tf.truncated_normal([1200,26], stddev=0.001))
b = tf.Variable(tf.zeros([26]))
sess.run(tf.initialize_all_variables())

y = tf.nn.softmax(tf.matmul(x,W) + b)

cross_entropy = -tf.reduce_sum(y_*tf.log(y))

train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)
Wtest = W


for i in range(10):
  print("iteracao:")
  print(i)
  Xbatch = X[np.random.randint(X.shape[0],size=100),:]
  Ybatch = Y[np.random.randint(Y.shape[0],size=100),:]
  train_step.run(feed_dict={x: Xbatch, y_: Ybatch})
  print("atualizacao de pesos")  
  print(Wtest==W)#monitora atualizaçao dos pesos

  correct_prediction = tf.equal(tf.argmax(y,1), tf.argmax(y_,1))
  accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
  print("precisao:Y")
  print accuracy.eval(feed_dict={x: X, y_: Y})
  print(" ")
  print(" ")

1 个答案:

答案 0 :(得分:4)

问题可能源于您如何初始化权重矩阵W。如果它被初始化为全零,则每个步骤中的所有神经元将遵循相同的梯度,这导致网络无法训练。替换行

W = tf.Variable(tf.zeros([1200,26]))

......用类似

的东西
W = tf.Variable(tf.truncated_normal([1200,26], stddev=0.001))

......应该让它开始训练。

CrossValidated网站上的

This question很好地解释了为什么不应将所有权重初始化为零。