如何训练具有LSTM细胞的RNN用于时间序列预测

时间:2016-03-12 17:49:08

标签: time-series tensorflow prediction lstm

我目前正在尝试构建一个用于预测时间序列的简单模型。目标是使用序列训练模型,以便模型能够预测未来值。

我正在使用tensorflow和lstm单元格来执行此操作。该模型通过时间截断反向传播进行训练。我的问题是如何构建培训数据。

例如,让我们假设我们想要学习给定的序列:

[1,2,3,4,5,6,7,8,9,10,11,...]

我们将网络展开为num_steps=4

选项1

input data               label     
1,2,3,4                  2,3,4,5
5,6,7,8                  6,7,8,9
9,10,11,12               10,11,12,13
...

选项2

input data               label     
1,2,3,4                  2,3,4,5
2,3,4,5                  3,4,5,6
3,4,5,6                  4,5,6,7
...

选项3

input data               label     
1,2,3,4                  5
2,3,4,5                  6
3,4,5,6                  7
...

选项4

input data               label     
1,2,3,4                  5
5,6,7,8                  9
9,10,11,12               13
...

任何帮助都将不胜感激。

3 个答案:

答案 0 :(得分:5)

我正准备在TensorFlow中学习LSTM并尝试实现一个例子(幸运的是)试图预测一些简单的数学函数所产生的时间序列/数字序列。

但我正在使用一种不同的方式来构建训练数据,由Unsupervised Learning of Video Representations using LSTMs推动:

LSTM Future Predictor Model

选项5:

input data               label     
1,2,3,4                  5,6,7,8
2,3,4,5                  6,7,8,9
3,4,5,6                  7,8,9,10
...

除了本文之外,我(尝试)通过给定的TensorFlow RNN示例获取灵感。我目前的完整解决方案如下所示:

import math
import random
import numpy as np
import tensorflow as tf

LSTM_SIZE = 64
LSTM_LAYERS = 2
BATCH_SIZE = 16
NUM_T_STEPS = 4
MAX_STEPS = 1000
LAMBDA_REG = 5e-4


def ground_truth_func(i, j, t):
    return i * math.pow(t, 2) + j


def get_batch(batch_size):
    seq = np.zeros([batch_size, NUM_T_STEPS, 1], dtype=np.float32)
    tgt = np.zeros([batch_size, NUM_T_STEPS], dtype=np.float32)

    for b in xrange(batch_size):
        i = float(random.randint(-25, 25))
        j = float(random.randint(-100, 100))
        for t in xrange(NUM_T_STEPS):
            value = ground_truth_func(i, j, t)
            seq[b, t, 0] = value

        for t in xrange(NUM_T_STEPS):
            tgt[b, t] = ground_truth_func(i, j, t + NUM_T_STEPS)
    return seq, tgt


# Placeholder for the inputs in a given iteration
sequence = tf.placeholder(tf.float32, [BATCH_SIZE, NUM_T_STEPS, 1])
target = tf.placeholder(tf.float32, [BATCH_SIZE, NUM_T_STEPS])

fc1_weight = tf.get_variable('w1', [LSTM_SIZE, 1], initializer=tf.random_normal_initializer(mean=0.0, stddev=1.0))
fc1_bias = tf.get_variable('b1', [1], initializer=tf.constant_initializer(0.1))

# ENCODER
with tf.variable_scope('ENC_LSTM'):
    lstm = tf.nn.rnn_cell.LSTMCell(LSTM_SIZE)
    multi_lstm = tf.nn.rnn_cell.MultiRNNCell([lstm] * LSTM_LAYERS)
    initial_state = multi_lstm.zero_state(BATCH_SIZE, tf.float32)
    state = initial_state
    for t_step in xrange(NUM_T_STEPS):
        if t_step > 0:
            tf.get_variable_scope().reuse_variables()

        # state value is updated after processing each batch of sequences
        output, state = multi_lstm(sequence[:, t_step, :], state)

learned_representation = state

# DECODER
with tf.variable_scope('DEC_LSTM'):
    lstm = tf.nn.rnn_cell.LSTMCell(LSTM_SIZE)
    multi_lstm = tf.nn.rnn_cell.MultiRNNCell([lstm] * LSTM_LAYERS)
    state = learned_representation
    logits_stacked = None
    loss = 0.0
    for t_step in xrange(NUM_T_STEPS):
        if t_step > 0:
            tf.get_variable_scope().reuse_variables()

        # state value is updated after processing each batch of sequences
        output, state = multi_lstm(sequence[:, t_step, :], state)
        # output can be used to make next number prediction
        logits = tf.matmul(output, fc1_weight) + fc1_bias

        if logits_stacked is None:
            logits_stacked = logits
        else:
            logits_stacked = tf.concat(1, [logits_stacked, logits])

        loss += tf.reduce_sum(tf.square(logits - target[:, t_step])) / BATCH_SIZE

reg_loss = loss + LAMBDA_REG * (tf.nn.l2_loss(fc1_weight) + tf.nn.l2_loss(fc1_bias))

train = tf.train.AdamOptimizer().minimize(reg_loss)

with tf.Session() as sess:
    sess.run(tf.initialize_all_variables())

    total_loss = 0.0
    for step in xrange(MAX_STEPS):
        seq_batch, target_batch = get_batch(BATCH_SIZE)

        feed = {sequence: seq_batch, target: target_batch}
        _, current_loss = sess.run([train, reg_loss], feed)
        if step % 10 == 0:
            print("@{}: {}".format(step, current_loss))
        total_loss += current_loss

    print('Total loss:', total_loss)

    print('### SIMPLE EVAL: ###')
    seq_batch, target_batch = get_batch(BATCH_SIZE)
    feed = {sequence: seq_batch, target: target_batch}
    prediction = sess.run([logits_stacked], feed)
    for b in xrange(BATCH_SIZE):
        print("{} -> {})".format(str(seq_batch[b, :, 0]), target_batch[b, :]))
        print(" `-> Prediction: {}".format(prediction[0][b]))

示例输出如下:

### SIMPLE EVAL: ###
# [input seq] -> [target prediction]
#  `-> Prediction: [model prediction]  
[  33.   53.  113.  213.] -> [  353.   533.   753.  1013.])
 `-> Prediction: [ 19.74548721  28.3149128   33.11489105  35.06603241]
[ -17.  -32.  -77. -152.] -> [-257. -392. -557. -752.])
 `-> Prediction: [-16.38951683 -24.3657589  -29.49801064 -31.58583832]
[ -7.  -4.   5.  20.] -> [  41.   68.  101.  140.])
 `-> Prediction: [ 14.14126873  22.74848557  31.29668617  36.73633194]
...

该模型是 LSTM-autoencoder ,每个都有2层。

不幸的是,正如您在结果中看到的那样,此模型无法正确学习序列。我可能就是这样,我只是在某个地方犯了一个错误的错误,或者1000-10000的训练步骤对于LSTM来说只是少数几个。正如我所说,我也刚刚开始正确理解/使用LSTM。 但希望这可以为您提供有关实施的一些灵感。

答案 1 :(得分:4)

阅读了几篇LSTM介绍博客,例如Jakob Aungiers',选项3似乎是无状态LSTM的正确选项。

如果您的LSTM需要比num_steps更早记住数据,那么您可以以有状态的方式进行训练 - 对于Keras示例,请参阅Philippe Remy's blog post "Stateful LSTM in Keras"。但是,Philippe没有显示批量大于1的示例。我想在您的情况下,具有状态LSTM的批量大小为4可以与以下数据一起使用(写为input -> label):

batch #0:
1,2,3,4 -> 5
2,3,4,5 -> 6
3,4,5,6 -> 7
4,5,6,7 -> 8

batch #1:
5,6,7,8 -> 9
6,7,8,9 -> 10
7,8,9,10 -> 11
8,9,10,11 -> 12

batch #2:
9,10,11,12 -> 13
...

由此,例如,批次#0中的第二个样品被正确地重复使用以继续使用批次#1的第二个样品进行培训。

这与您的选项4类似,但您没有在那里使用所有可用的标签。

<强>更新

batch_size等于num_steps的情况下延伸到我的建议,Alexis Huet gives an answer因为batch_size是[{1}}的除数,可以用于较大的num_steps。他describes it nicely在他的博客上。

答案 2 :(得分:1)

我认为选项1最接近/tensorflow/models/rnn/ptb/reader.py中的参考实现

def ptb_iterator(raw_data, batch_size, num_steps):
  """Iterate on the raw PTB data.

  This generates batch_size pointers into the raw PTB data, and allows
  minibatch iteration along these pointers.

  Args:
    raw_data: one of the raw data outputs from ptb_raw_data.
    batch_size: int, the batch size.
    num_steps: int, the number of unrolls.

  Yields:
    Pairs of the batched data, each a matrix of shape [batch_size, num_steps].
    The second element of the tuple is the same data time-shifted to the
    right by one.

  Raises:
    ValueError: if batch_size or num_steps are too high.
  """
  raw_data = np.array(raw_data, dtype=np.int32)

  data_len = len(raw_data)
  batch_len = data_len // batch_size
  data = np.zeros([batch_size, batch_len], dtype=np.int32)
  for i in range(batch_size):
    data[i] = raw_data[batch_len * i:batch_len * (i + 1)]

  epoch_size = (batch_len - 1) // num_steps

  if epoch_size == 0:
    raise ValueError("epoch_size == 0, decrease batch_size or num_steps")

  for i in range(epoch_size):
    x = data[:, i*num_steps:(i+1)*num_steps]
    y = data[:, i*num_steps+1:(i+1)*num_steps+1]
    yield (x, y)

但是,另一个选项是为每个训练序列随机选择一个指向数据数组的指针。