我想创建一个带有响应tabPanel / tabPanels的简单应用程序,它取决于selectInput
中的值(我已找到解决方案here)。此外,在我在这个小部件中选择一个值后,我将看到不同数量的tabPanel,它们也应该用作过滤器。
例如。在我的应用中,我使用diamonds
数据集。如果我选择一个单词' Very Good'我将看到一个包含所有具有此值的行的数据集。在它的顶部,我还将看到过滤数据集中的所有唯一color
值。我想要实现的是使用上面的tabPanel再次过滤。
library(shiny)
library(shinyTree)
library(dplyr)
library(DT)
library(ggplot2)
diamonds_test <- sample_n(diamonds, 100)
diam_cut <-
list(
`Very Good` = "Very Good",
Ideal = "Ideal",
Fair = "Fair",
Premium = "Premium",
Good = "Good"
)
runApp(list(
ui = pageWithSidebar(
headerPanel('Dynamic Tabs'),
sidebarPanel(
selectInput('name','',choices = diam_cut)
),
mainPanel(
uiOutput('mytabs'),
dataTableOutput('table')
)
),
server = function(input, output, session){
output$mytabs = renderUI({
colorVector <- diamonds_test %>%
filter(cut == input$name) %>%
distinct(color) %>%
.[['color']] %>%
as.character()
myTabs = lapply(colorVector, tabPanel)
do.call(tabsetPanel, c(myTabs, type = 'pills'))
})
output$table <- renderDataTable({
data <- diamonds_test %>%
filter(cut == input$name)
datatable(data)
})
}
))
答案 0 :(得分:0)
经过几个小时的搜索并尝试不同的配置后,我创建了我想要实现的目标。
library(shiny)
library(shinyTree)
library(dplyr)
library(DT)
diamonds_test <- sample_n(diamonds, 100)
diam_cut <-
list(
`Very Good` = "Very Good",
Ideal = "Ideal",
Fair = "Fair",
Premium = "Premium",
Good = "Good"
)
runApp(list(
ui = pageWithSidebar(
headerPanel('Dynamic Tabs'),
sidebarPanel(
selectInput('name','',choices = diam_cut)
),
mainPanel(
uiOutput('mytabs')
)
),
server = function(input, output, session){
colorVector <- reactive({
colorVector <- diamonds_test %>%
filter(cut == input$name) %>%
distinct(color) %>%
.[['color']] %>%
as.character()
})
output$mytabs <- renderUI({
colorVector_use <- colorVector()
myTabs = lapply(colorVector_use, tabPanel)
do.call(tabsetPanel,
c(type = 'pills',
lapply(colorVector_use, function(x) {
call("tabPanel",x ,call('dataTableOutput',paste0("table_",x)))
})
))
})
data <- reactive({
df <- diamonds_test %>%
filter(cut == input$name)
})
observe({
if (!is.null(colorVector())){
lapply(colorVector(), function(color_value){
output[[paste0('table_',color_value)]] <- renderDataTable(
data() %>% filter(color == color_value))
})
}
})
}
))