这是一个xml文件的例子,在这个文件中给出了一些math ml标签。当加载XML文件时,它们会在加载时给出异常 例外情况是" mml'是未声明的前缀。 16号线,2号线和34号线;
xDocFile = XDocument.Load(xmlfile);
你可以告诉我如何解决它
例如,
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE book-part SYSTEM "C:\book-dtd-2.3\book.dtd">
<book-part id="" book-part-type="chapter" book-part-number="appd" xmlns:xlink="http://www.w3.org/1999/xlink">
<body>
<sec id="appd.s1">
<title>Equation 1. Response measure equals end of treatment mean minus the baseline mean</title>
<disp-formula id="appd.eq1">
<mml:math id="appd.eq2" display='block'>
<mml:mrow>
<mml:msubsup>
<mml:mi>y</mml:mi>
<mml:mi>i</mml:mi>
</mml:msubsup>
</mml:mrow>
</mml:math>
</disp-formula>
<p>Response measure equals end of treatment mean minus the baseline mean</p>
</sec>
<title>Equation 8. Likelihood of observed differences, specified as a Gaussian distribution, and standard deviation of estimate derived from the standard error of the treatment effect</title>
<disp-formula id="appd.eq14">
<italic>d</italic>
<italic>
<sub>i</sub>
</italic>~<italic>N</italic>(<italic>θ</italic>
<italic>
<sub>i</sub>
</italic>, <italic>σ</italic>
<sup>2</sup>)</disp-formula>
<p>Likelihood of observed differences, specified as a Gaussian distribution, and standard deviation of estimate derived from the standard error of the treatment effect</p>
<p>All unknown parameters were given weakly-informative prior distributions and estimated using Markov chain Monte Carlo<xref ref-type="bibr" rid="b4">4</xref> methods via the PyMC 2.3 software package.<xref ref-type="bibr" rid="b5">5</xref> The model was run for 200,000 iterations, with the first 150,000 samples conservatively discarded as burn-in, leaving 50,000 for inference.</p>
</sec>
</body>
</book-part>
答案 0 :(得分:0)
这是固定代码
<?xml version="1.0" encoding="utf-8"?>
<!DOCTYPE book-part SYSTEM "C:\book-dtd-2.3\book.dtd">
<book-part id="" book-part-type="chapter" book-part-number="appd" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:mml="C:\book-dtd-2.3\book.dtd">
<body>
<sec id="appd.s1">
<title>Equation 1. Response measure equals end of treatment mean minus the baseline mean</title>
<disp-formula id="appd.eq1">
<mml:math id="appd.eq2" display='block'>
<mml:mrow>
<mml:msubsup>
<mml:mi>y</mml:mi>
<mml:mi>i</mml:mi>
</mml:msubsup>
</mml:mrow>
</mml:math>
</disp-formula>
<p>Response measure equals end of treatment mean minus the baseline mean</p>
</sec>
<title>Equation 8. Likelihood of observed differences, specified as a Gaussian distribution, and standard deviation of estimate derived from the standard error of the treatment effect</title>
<disp-formula id="appd.eq14">
<italic>d</italic>
<italic>
<sub>i</sub>
</italic>~<italic>N</italic>(<italic>θ</italic>
<italic>
<sub>i</sub>
</italic>, <italic>σ</italic>
<sup>2</sup>)
</disp-formula>
<p>Likelihood of observed differences, specified as a Gaussian distribution, and standard deviation of estimate derived from the standard error of the treatment effect</p>
<p>
All unknown parameters were given weakly-informative prior distributions and estimated using Markov chain Monte Carlo<xref ref-type="bibr" rid="b4">4</xref> methods via the PyMC 2.3 software package.<xref ref-type="bibr" rid="b5">5</xref> The model was run for 200,000 iterations, with the first 150,000 samples conservatively discarded as burn-in, leaving 50,000 for inference.
</p>
</body>
</book-part>