将文本文件中隐藏格式的数据导入R

时间:2016-03-09 19:35:39

标签: r parsing text-processing text-parsing

从一个可恶的当地政府网站下载了一堆数据。有77,000个项目条目看起来与以下内容完全相同,包含在纯文本文件中。我需要将这堆粪便导入R作为数据框:

Instrument: 201301240005447
Recorded: 01/24/2013
Consideration: $150,125.00
Document Type: MORTGAGES 
Pages: 17
Grantor: BYRES, CONNIE R / BYRES, SCOTT
Grantee: MORTGAGE ELECTRONIC REGISTRATION SYSTEMS INC / QUICKEN LOANS INC
Legal Description: * St:5495 MCNAMARA LN City:FLINT PrpId:1135532002 CC:11 T:8 R:7 S:35 ext:PT OF NE4 
 * 
---------------------------------/---------------------------------
Instrument: 201301240005408
Recorded: 01/24/2013
Consideration: $65,124.00
Document Type: MORTGAGES 
Pages: 17
Grantor: SANNE, BETTY LOU / SANNE, KENNETH D
Grantee: JPMORGAN CHASE BANK NA
Legal Description: Sub:WOODCROFT NO 1 Lt:188 St:2213 RADCLIFFE AVE City:FLINT PrpId:4024106003 CC:54 
 * 
---------------------------------/---------------------------------

有常见的字符向量,如“Instrument”,“Grantor”和“PrpId”。我究竟如何将其导入R?这会涉及解析或抓取某种类型吗?

毋庸置疑,我尝试将此文件导入Excel但无效。我认为R会更好地工作,只需要弄清楚如何。感谢

4 个答案:

答案 0 :(得分:7)

初学者与R所以我相信人们会添加更好的方法,但只要每个记录的字段按数量和顺序固定,这里就有效;

# Use gsubfn to get read.pattern
install.packages('gsubfn')    
library(gsubfn)

# Read all data rows into 'data'    
data = read.pattern('Test/test.txt', '([^:]*):(.*)', as.is=TRUE, fill=TRUE)

# Reshape the data to 8 columns    
df = as.data.frame(matrix(data$V2, ncol=8, byrow=TRUE))

# Set the column names to reasonable values.
colnames(df) = data$V1[1:8]

        Instrument    Recorded Consideration Document Type Pages                              Grantor                                                           Grantee                                                                    Legal Description
1  201301240005447  01/24/2013   $150,125.00    MORTGAGES     17       BYRES, CONNIE R / BYRES, SCOTT  MORTGAGE ELECTRONIC REGISTRATION SYSTEMS INC / QUICKEN LOANS INC   * St:5495 MCNAMARA LN City:FLINT PrpId:1135532002 CC:11 T:8 R:7 S:35 ext:PT OF NE4
2  201301240005408  01/24/2013    $65,124.00    MORTGAGES     17  SANNE, BETTY LOU / SANNE, KENNETH D                                            JPMORGAN CHASE BANK NA    Sub:WOODCROFT NO 1 Lt:188 St:2213 RADCLIFFE AVE City:FLINT PrpId:4024106003 CC:54

答案 1 :(得分:2)

rl <- readLines(textConnection('Instrument: 201301240005447
Recorded: 01/24/2013
Consideration: $150,125.00
Document Type: MORTGAGES 
Pages: 17
Grantor: BYRES, CONNIE R / BYRES, SCOTT
Grantee: MORTGAGE ELECTRONIC REGISTRATION SYSTEMS INC / QUICKEN LOANS INC
Legal Description: * St:5495 MCNAMARA LN City:FLINT PrpId:1135532002 CC:11 T:8 R:7 S:35 ext:PT OF NE4 
* 
  ---------------------------------/---------------------------------
Instrument: 201301240005408
Recorded: 01/24/2013
Consideration: $65,124.00
Document Type: MORTGAGES 
Pages: 17
Grantor: SANNE, BETTY LOU / SANNE, KENNETH D
Grantee: JPMORGAN CHASE BANK NA
Legal Description: Sub:WOODCROFT NO 1 Lt:188 St:2213 RADCLIFFE AVE City:FLINT PrpId:4024106003 CC:54 
* 
  ---------------------------------/---------------------------------'))

您可以使用它来选择您想要的东西,定义一个辅助函数来提取每个字段(类似于我回答的问题earlier today

n <- c('Instrument', 'Recorded', 'Consideration', 'Document Type',
       'Pages', 'Grantor', 'Grantee', 'Legal Description')
f <- function(what, string = rl) {
  gsub(sprintf('%s\\:\\s*([^~]*)|.', what), '\\1', string, perl = TRUE)
}

## read in the lines and do some minimal processing
rl <- gsub('^\\* ', '\n', rl[grepl('^[A-Z*]', rl)])
rl <- paste0(rl, collapse = '~')
rl <- strsplit(rl, '\\n')[[1]]

data.frame(setNames(lapply(n, f), n))

#        Instrument   Recorded Consideration Document.Type Pages
# 1 201301240005447 01/24/2013   $150,125.00    MORTGAGES     17
# 2 201301240005408 01/24/2013    $65,124.00    MORTGAGES     17
#                               Grantor
# 1      BYRES, CONNIE R / BYRES, SCOTT
# 2 SANNE, BETTY LOU / SANNE, KENNETH D
#                                                            Grantee
# 1 MORTGAGE ELECTRONIC REGISTRATION SYSTEMS INC / QUICKEN LOANS INC
# 2                                           JPMORGAN CHASE BANK NA
#                                                                    Legal.Description
# 1 * St:5495 MCNAMARA LN City:FLINT PrpId:1135532002 CC:11 T:8 R:7 S:35 ext:PT OF NE4 
# 2  Sub:WOODCROFT NO 1 Lt:188 St:2213 RADCLIFFE AVE City:FLINT PrpId:4024106003 CC:54 

n <- c('Instrument', 'Recorded', 'Consideration')
data.frame(setNames(lapply(n, f), n))

#        Instrument   Recorded Consideration
# 1 201301240005447 01/24/2013   $150,125.00
# 2 201301240005408 01/24/2013    $65,124.00

答案 2 :(得分:2)

我编写了一个非常通用的解析函数,可以处理任何分区线和字段值分隔符模式,指定为参数化正则表达式。它还可以选择从字段值中删除尾随空格,并将可变参数传递给构建结果data.frame的单个data.frame()调用。

sectionedFieldLinesToFrame <- function(lines,divRE,sepRE,select,rtw=T,...) {
    divLineIndexes <- grep(perl=T,divRE,lines);
    ## remove possible leading and trailing divs, for robustness
    if (length(divLineIndexes)>0L && divLineIndexes[1L]==1L) {
        leadDivCount <- match(T,c(diff(divLineIndexes)!=1L,T));
        lines <- lines[-seq_len(leadDivCount)];
        divLineIndexes <- divLineIndexes[-seq_len(leadDivCount)]-leadDivCount;
    }; ## end if
    if (length(divLineIndexes)>0L && divLineIndexes[length(divLineIndexes)]==length(lines)) {
        trailDivCount <- match(T,c(rev(diff(divLineIndexes)!=1L),T));
        lines <- lines[-seq(to=length(lines),len=trailDivCount)];
        divLineIndexes <- divLineIndexes[-seq(to=length(divLineIndexes),len=trailDivCount)];
    }; ## end if
    ## get fields to extract
    if (missing(select)) {
        allFieldLineIndexes <- grep(perl=T,sepRE,lines);
        fields <- unique(sub(perl=T,paste0(sepRE,'.*'),'',lines[allFieldLineIndexes]));
    } else {
        fields <- select;
    }; ## end if
    ## extract each field vector and build the data.frame
    do.call(data.frame,c(setNames(lapply(fields,function(field) {
        fieldLineIndexes <- grep(perl=T,paste0('^\\Q',field,'\\E',sepRE),lines);
        sectionIndexes <- findInterval(fieldLineIndexes,divLineIndexes); ## 0-based
        values <- sub(perl=T,paste0('^.*?',sepRE),'',lines[fieldLineIndexes]);
        if (rtw) values <- sub(perl=T,'\\s+$','',values);
        values[match(seq(0L,length(divLineIndexes)),sectionIndexes)];
    }),fields),...));
}; ## end sectionedFieldLinesToFrame()

以下是如何使用它:

fileName <- 'data.txt';
divRE <- '^-+/-+$';
sepRE <- ':\\s*';
df <- sectionedFieldLinesToFrame(readLines(fileName),divRE,sepRE,stringsAsFactors=F);
str(df);
## 'data.frame':   2 obs. of  8 variables:
##  $ Instrument       : chr  "201301240005447" "201301240005408"
##  $ Recorded         : chr  "01/24/2013" "01/24/2013"
##  $ Consideration    : chr  "$150,125.00" "$65,124.00"
##  $ Document.Type    : chr  "MORTGAGES" "MORTGAGES"
##  $ Pages            : chr  "17" "17"
##  $ Grantor          : chr  "BYRES, CONNIE R / BYRES, SCOTT" "SANNE, BETTY LOU / SANNE, KENNETH D"
##  $ Grantee          : chr  "MORTGAGE ELECTRONIC REGISTRATION SYSTEMS INC / QUICKEN LOANS INC" "JPMORGAN CHASE BANK NA"
##  $ Legal.Description: chr  "* St:5495 MCNAMARA LN City:FLINT PrpId:1135532002 CC:11 T:8 R:7 S:35 ext:PT OF NE4" "Sub:WOODCROFT NO 1 Lt:188 St:2213 RADCLIFFE AVE City:FLINT PrpId:4024106003 CC:54"

您还可以指定select参数以准确选择要提取的字段:

select <- c('Instrument','Pages','Grantor');
df <- sectionedFieldLinesToFrame(readLines(fileName),divRE,sepRE,select,stringsAsFactors=F);
df;
##        Instrument Pages                             Grantor
## 1 201301240005447    17      BYRES, CONNIE R / BYRES, SCOTT
## 2 201301240005408    17 SANNE, BETTY LOU / SANNE, KENNETH D

我已尽力使其尽可能健壮。它仔细处理可能的冗余前导和尾随分隔线,并正确处理各部分之间不一致字段的情况。

值得强调的是最后一点。所提供的所有其他解决方案都对输入数据做出了非常脆弱的假设,要么每个部分恰好有8个字段始终以相同的顺序排列,要么每个部分都出现每个(可能是硬编码的)字段名称。如果违反了这个假设,那些解决方案就变得毫无用处。我的函数不对字段编号,名称或一致性做出任何假设。它动态检索任何部分中存在的所有字段名称,并构建每个字段的正确向量,生成NA元素,其中字段不存在于给定部分中。

以下是一些例子:

sectionedFieldLinesToFrame(character(),'^-$',':');
## data frame with 0 columns and 0 rows
sectionedFieldLinesToFrame(rep('-',2L),'^-$',':');
## data frame with 0 columns and 0 rows
sectionedFieldLinesToFrame(c('A:a','-'),'^-$',':');
##   A
## 1 a
sectionedFieldLinesToFrame(c('A:a','-','-'),'^-$',':');
##   A
## 1 a
sectionedFieldLinesToFrame(c('A:a','-','B:b','-'),'^-$',':');
##      A    B
## 1    a <NA>
## 2 <NA>    b
sectionedFieldLinesToFrame(c('A:a','B:b','-','B:c','-'),'^-$',':');
##      A B
## 1    a b
## 2 <NA> c
sectionedFieldLinesToFrame(c('A:a','B:b','-','B:c','-','A:d'),'^-$',':');
##      A    B
## 1    a    b
## 2 <NA>    c
## 3    d <NA>
sectionedFieldLinesToFrame(c('-','-','A:a','B:b','-','B:c','-','A:d','C:e','-'),'^-$',':');
##      A    B    C
## 1    a    b <NA>
## 2 <NA>    c <NA>
## 3    d <NA>    e
sectionedFieldLinesToFrame(c('-','A:a','B:b','-','-','B:c','-','A:d','C:e','-'),'^-$',':');
##      A    B    C
## 1    a    b <NA>
## 2 <NA> <NA> <NA>
## 3 <NA>    c <NA>
## 4    d <NA>    e

答案 3 :(得分:1)

仅使用{base}而不使用正则表达式的解决方案。这不是很优雅:

# read file and parse out values from field names
q <- readLines('ugly.txt')
q <- lapply(X = q, FUN = strsplit, split = ': ')
q <- unlist(q)
q <- matrix(data = q, ncol = 2, byrow = T)
COLUMNS <- unique(q[,1])
q <- q[,2]

# move values to rows of a DF and set names for DF
q <- matrix(data = q, ncol = 9, byrow = T)
q <- data.frame(q)
names(q) <- COLUMNS

# clean up data types
q$Recorded <- as.Date(q$Recorded)
q$Consideration <- as.numeric(q$Consideration)
q$Pages <- as.numeric(q$Pages)

View(q)