我一直在研究使用计划对比而不是事后t检验。我通常使用ezANOVA
(Type III ANOVA),但似乎目前没有使用ezANOVA
进行计划对比。
aov()
是I型ANOVA(我不想讨论哪种类型最适合哪种类型的设计)。使用aov()
(在组设计之间)进行计划对比是直截了当的,但我希望在重复测量中进行III型方差分析并且坦率ezANOVA
具有更加用户友好的输出。
请注意ezANOVA
可以选择包含return_aov = TRUE
是否有人知道如何使用ezANOVA
提供的信息进行计划对比?
注意: return_aov = TRUE
允许通过以下内容访问aov
的输出:
summary.lm(ModelName$aov$'Participant:IndependentVariable1')
上面的参与者是添加到wid
中的ezANOVA
的示例变量:
wid = .(Participant)
summary.lm()
通常用于在aov
中呈现计划对比的结果,在组间ANOVA之间授予,而不是重复测量。
我特别感兴趣的是使用输出来进行重复测量ANOVA的计划对比。
BOUNTY GOALS
我希望从这个奖励中获得目标:
1)使用ezANOVA
的输出在重复测量方差分析中进行计划对比。
1A)使用ezANOVA
的输出对主题ANOVA进行计划对比(这个应该相对容易,因此不是要求赏金的必要条件。)
任何虚拟数据都应该足够了,但这里提醒我ezANOVA
重复测量ANOVA的格式:
ModelName <- ezANOVA(
data = DataSet,
dv = .(DependentVariable),
wid = .(Participant),
within = .(IndependentVariable1, IndependentVariable2),
type=3,
detailed = TRUE,
return_aov = TRUE)
这是Related Question with reproducible data and code,可用于解决此问题。
您可以找到PDF here giving some background on planned contrasts以及他们的所作所为。
答案 0 :(得分:1)
emmeans
包提供了适当的功能来计算aov
和aovlist
对象的估计边际均值(EMM)的自定义对比度/任意线性函数(请参阅here以获取受支持模型的完整列表)。
以下,我使用ANT
软件包随附的ez
数据集。
首先,我们使用ezANOVA
建立混合阶乘方差分析。请注意,为了获得有意义的III型测试,需要设置正交对比(例如,参见John Fox的答案here)。
library("ez")
library("emmeans")
# set orthogonal contrasts
options(contrasts = c("contr.sum", "contr.poly"))
data(ANT)
rt_anova <- ezANOVA(data = ANT[ANT$error == 0, ],
dv = rt,
wid = subnum,
within = .(cue, flank),
between = group,
type = 3,
return_aov = TRUE)
然后我们可以计算所有组-侧面组合的EMM。
emm <- emmeans(rt_anova$aov, ~ group * flank)
emm
## group flank emmean SE df lower.CL upper.CL
## Control Neutral 381.5546 1.735392 53.97 378.0753 385.0339
## Treatment Neutral 379.9286 1.735392 53.97 376.4493 383.4079
## Control Congruent 381.6363 1.735392 53.97 378.1570 385.1155
## Treatment Congruent 379.7520 1.735392 53.97 376.2727 383.2313
## Control Incongruent 466.6770 1.735392 53.97 463.1977 470.1563
## Treatment Incongruent 452.2352 1.735392 53.97 448.7559 455.7145
现在可以轻松计算这些EMM上的所有成对比较或任何所需的对比度。
如果您需要更多有关如何从假设中得出对比权重的信息,请参阅this书的一章和我的答案here。
# all pairwise comparisons
pairs(emm, adjust = "Holm")
## contrast estimate SE df t.ratio p.value
## Control,Neutral - Treatment,Neutral 1.62594836 2.454215 53.97 0.663 1.0000
## Control,Neutral - Control,Congruent -0.08167403 2.473955 36.00 -0.033 1.0000
## Control,Neutral - Treatment,Congruent 1.80259257 2.454215 53.97 0.734 1.0000
## Control,Neutral - Control,Incongruent -85.12239797 2.473955 36.00 -34.407 <.0001
## Control,Neutral - Treatment,Incongruent -70.68062093 2.454215 53.97 -28.800 <.0001
## Treatment,Neutral - Control,Congruent -1.70762239 2.454215 53.97 -0.696 1.0000
## Treatment,Neutral - Treatment,Congruent 0.17664421 2.473955 36.00 0.071 1.0000
## Treatment,Neutral - Control,Incongruent -86.74834633 2.454215 53.97 -35.347 <.0001
## Treatment,Neutral - Treatment,Incongruent -72.30656929 2.473955 36.00 -29.227 <.0001
## Control,Congruent - Treatment,Congruent 1.88426660 2.454215 53.97 0.768 1.0000
## Control,Congruent - Control,Incongruent -85.04072394 2.473955 36.00 -34.374 <.0001
## Control,Congruent - Treatment,Incongruent -70.59894690 2.454215 53.97 -28.766 <.0001
## Treatment,Congruent - Control,Incongruent -86.92499054 2.454215 53.97 -35.419 <.0001
## Treatment,Congruent - Treatment,Incongruent -72.48321351 2.473955 36.00 -29.299 <.0001
## Control,Incongruent - Treatment,Incongruent 14.44177704 2.454215 53.97 5.884 <.0001
##
## Results are averaged over the levels of: cue
## P value adjustment: holm method for 15 tests
# custom contrasts
contrast(
emm,
list(c1 = c(1, -1, 0, 0, 0, 0), # reproduces first pairwise comparison
# emmean of row 1 - (emmean of row 1 + emmean of row 2) / 2; see EMMs table
# 381.5546 - (379.9286 + 381.6363) / 2
c2 = c(1, -0.5, -0.5, 0, 0, 0))
)
## contrast estimate SE df t.ratio p.value
## c1 1.6259484 2.454215 53.97 0.663 0.5105
## c2 0.7721372 2.136825 43.84 0.361 0.7196
这完全适用于对象内部方差分析或对象间方差分析。
# within-subjects ANOVA
rt_anova_wi <- ezANOVA(data = ANT[ANT$error == 0, ],
dv = rt,
wid = subnum,
within = .(cue, flank),
type = 3,
return_aov = TRUE)
emm <- emmeans(rt_anova_wi$aov, ~ cue * flank)
contrast(
emm,
list(c1 = c(1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),
c2 = c(1, -0.5, -0.5, 0, 0, 0, 0, 0, 0, 0, 0, 0))
)
## contrast estimate SE df t.ratio p.value
## c1 47.31005 3.802857 170.34 12.441 <.0001
## c2 50.35320 3.293371 170.34 15.289 <.0001
# between-subjects ANOVA
rt_anova_bw <- ezANOVA(data = ANT[ANT$error == 0, ],
dv = rt,
wid = subnum,
within_full = .(cue, flank),
between = group,
type = 3,
return_aov = TRUE)
emm_bw <- emmeans(rt_anova_bw$aov, ~ group)
# custom linear function
contrast(
emm_bw,
list(c1 = c(2/3, 1/2))
)
## contrast estimate SE df t.ratio p.value
## c1 475.2899 0.8213448 18 578.673 <.0001