根据存储在dict中的条件从Pandas数据帧中选择数据

时间:2016-03-09 03:46:48

标签: python pandas dataframe

我有一个包含大量变量的Pandas数据帧。这可以简化为:

tempDF = pd.DataFrame({ 'var1': [12,12,12,12,45,45,45,51,51,51],
                        'var2': ['a','a','b','b','b','b','b','c','c','d'],
                        'var3': ['e','f','f','f','f','g','g','g','g','g'],
                        'var4': [1,2,3,3,4,5,6,6,6,7]})

如果我想选择数据帧的子集(例如var2 ='b'和var4 = 3),我会使用:

tempDF.loc[(tempDF['var2']=='b') & (tempDF['var4']==3),:]

但是,如果匹配条件存储在dict中,是否可以选择数据帧的子集,例如:

tempDict = {'var2': 'b','var4': 3}

重要的是变量名称不是预定义的,并且dict中包含的变量数量是可变的。

我一直对此感到困惑,所以任何建议都会非常感激。

3 个答案:

答案 0 :(得分:2)

您可以使用 list comprehension 为每个条件创建蒙版,然后通过转换为dataframe并使用all来加入它们:

In [23]: pd.DataFrame([tempDF[key] == val for key, val in tempDict.items()]).T.all(axis=1)
Out[23]:
0    False
1    False
2     True
3     True
4    False
5    False
6    False
7    False
8    False
9    False
dtype: bool

然后你可以使用该掩码切割数据帧:

mask = pd.DataFrame([tempDF[key] == val for key, val in tempDict.items()]).T.all(axis=1)

In [25]: tempDF[mask]
Out[25]:
   var1 var2 var3  var4
2    12    b    f     3
3    12    b    f     3

答案 1 :(得分:2)

您可以评估一系列条件。他们不一定只是一个平等。

df = tempDF
d = tempDict

# `repr` returns the string representation of an object.    
>>> df[eval(" & ".join(["(df['{0}'] == {1})".format(col, repr(cond)) 
       for col, cond in d.iteritems()]))]
   var1 var2 var3  var4
2    12    b    f     3
3    12    b    f     3

查看eval在这里做了什么:

conditions = " & ".join(["(df['{0}'] == {1})".format(col, repr(cond)) 
       for col, cond in d.iteritems()])

>>> conditions
"(df['var4'] == 3) & (df['var2'] == 'b')"

>>> eval(conditions)
0    False
1    False
2     True
3     True
4    False
5    False
6    False
7    False
8    False
9    False
dtype: bool

这是另一个使用等式约束的例子:

>>> eval(" & ".join(["(df['{0}'] == {1})".format(col, repr(cond)) 
                      for col, cond in d.iteritems()]))
d = {'var2': ('==', "'b'"),
     'var4': ('>', 3)}

>>> df[eval(" & ".join(["(df['{0}'] {1} {2})".format(col, cond[0], cond[1]) 
       for col, cond in d.iteritems()]))]
   var1 var2 var3  var4
4    45    b    f     4
5    45    b    g     5
6    45    b    g     6

另一种方法是使用query

qry = " & ".join('{0} {1} {2}'.format(k, cond[0], cond[1]) for k, cond in d.iteritems())

>>> qry
"var4 > 3 & var2 == 'b'"

>>> df.query(qry)
   var1 var2 var3  var4
4    45    b    f     4
5    45    b    g     5
6    45    b    g     6

答案 2 :(得分:1)

这是从tempDict

建立条件的一种方法
In [25]: tempDF.loc[pd.np.all([tempDF[k] == tempDict[k] for k in tempDict], axis=0), :]
Out[25]:
   var1 var2 var3  var4
2    12    b    f     3
3    12    b    f     3

或者使用query获取更具可读性的查询字符串。

In [33]: tempDF.query(' & '.join(['{0}=={1}'.format(k, repr(v)) for k, v in tempDict.iteritems()]))
Out[33]:
   var1 var2 var3  var4
2    12    b    f     3
3    12    b    f     3

In [34]: ' & '.join(['{0}=={1}'.format(k, repr(v)) for k, v in tempDict.iteritems()])
Out[34]: "var4==3 & var2=='b'"