我正在从cartopy
绘制国家/地区,并在颜色地图中添加颜色,如下所示:
cmap = plt.get_cmap('viridis')
norm = matplotlib.colors.Normalize(vmin=dfSingle.min(), vmax=dfSingle.max())
dfSingle[:] = norm(dfSingle).data
kw = dict(resolution='110m', category='cultural',
name='admin_0_countries')
states_shp = shapereader.natural_earth(**kw)
shp = shapereader.Reader(states_shp)
ax = plt.axes(projection=ccrs.PlateCarree())
for record, state in zip(shp.records(), shp.geometries()):
try:
colorNormalized = dfSingle[int(record.attributes['iso_n3'])]
ax.add_geometries([state], ccrs.PlateCarree(),
facecolor=cmap(colorNormalized), edgecolor='black')
except KeyError:
ax.add_geometries([state], ccrs.PlateCarree(),
facecolor='grey', edgecolor='black')
我的数据如下:
In [246]: dfSingle.head()
Out[246]:
V2
12 0.179909
31 0.332297
32 0.642179
36 0.815429
48 0.215383
现在我想添加与标准化值和cmap
对应的颜色栏。但是,我一直在收到错误:
ax.get_figure().colorbar()
AttributeError: 'GeoAxesSubplot' object has no attribute 'colorbar'
cmap.colorbar
AttributeError: 'ListedColormap' object has no attribute 'colorbar'
foo = matplotlib.cm.ScalarMappable(cmap)
ax.get_figure().colorbar(foo)
TypeError: You must first set_array for mappable
foo.set_array(dfSingle.values)
ax.get_figure().colorbar(foo)
AttributeError: 'ListedColormap' object has no attribute 'autoscale_None'
这就是我现在的情节:
如何添加色条?
答案 0 :(得分:1)
解决方案是设置_A = []
,而不是使用set_array()
函数。
sm = plt.cm.ScalarMappable(cmap=cmap)
sm._A = []
cb = plt.colorbar(sm)
cb.set_ticks([])