我想计算文本文件中所有字词的频率。
>>> countInFile('test.txt')
如果目标文本文件如下,应返回{'aaa':1, 'bbb': 2, 'ccc':1}
:
# test.txt
aaa bbb ccc
bbb
我在some posts之后使用纯python实现了它。但是,由于文件大小(> 1GB),我发现纯python方式不足。
我认为借用sklearn的力量是候选人。
如果你让CountVectorizer计算每一行的频率,我猜你会通过总结每一列来获得字频率。但是,这听起来有点间接的方式。
使用python计算文件中单词的最有效和直接的方法是什么?
我的(非常慢)代码在这里:
from collections import Counter
def get_term_frequency_in_file(source_file_path):
wordcount = {}
with open(source_file_path) as f:
for line in f:
line = line.lower().translate(None, string.punctuation)
this_wordcount = Counter(line.split())
wordcount = add_merge_two_dict(wordcount, this_wordcount)
return wordcount
def add_merge_two_dict(x, y):
return { k: x.get(k, 0) + y.get(k, 0) for k in set(x) | set(y) }
答案 0 :(得分:37)
最简洁的方法是使用Python提供的工具。
from future_builtins import map # Only on Python 2
from collections import Counter
from itertools import chain
def countInFile(filename):
with open(filename) as f:
return Counter(chain.from_iterable(map(str.split, f)))
就是这样。 map(str.split, f)
正在创建一个生成器,从每行返回list
个单词。包裹在chain.from_iterable
中将其转换为一次生成一个单词的单个生成器。 Counter
接受输入迭代并计算其中的所有唯一值。最后,您return
一个类似dict
的对象(Counter
)存储所有唯一字词及其计数,并且在创建过程中,您一次只能存储一行数据和总计数,而不是一次整个文件。
理论上,在Python 2.7和3.1上,您可以自己稍微更好地循环链接结果并使用dict
或collections.defaultdict(int)
来计算(因为Counter
是在Python中实现的,在某些情况下可以使它变慢),但让Counter
做的工作更简单,更自我记录(我的意思是,整个目标都在计算,所以使用Counter
)。除此之外,在CPython(参考解释器)上,3.2及更高版本Counter
具有一个C级加速器,用于计算可迭代输入,这些输入的运行速度比您在纯Python中编写的任何内容都快。
更新:您似乎希望删除标点符号并且不区分大小写,因此这是我之前代码的变体:
from string import punctuation
def countInFile(filename):
with open(filename) as f:
linewords = (line.translate(None, punctuation).lower().split() for line in f)
return Counter(chain.from_iterable(linewords))
您的代码运行速度要慢得多,因为它创建并销毁了许多小Counter
和set
个对象,而不是.update
每行一次Counter
(其中虽然比我在更新的代码块中给出的稍慢,但在缩放因子方面至少在算法上相似。)
答案 1 :(得分:9)
内存高效准确的方法是使用
scikit
中的CountVectorizer(用于ngram提取)word_tokenize
numpy
矩阵总和以收集计数collections.Counter
用于收集计数和词汇一个例子:
import urllib.request
from collections import Counter
import numpy as np
from nltk import word_tokenize
from sklearn.feature_extraction.text import CountVectorizer
# Our sample textfile.
url = 'https://raw.githubusercontent.com/Simdiva/DSL-Task/master/data/DSLCC-v2.0/test/test.txt'
response = urllib.request.urlopen(url)
data = response.read().decode('utf8')
# Note that `ngram_range=(1, 1)` means we want to extract Unigrams, i.e. tokens.
ngram_vectorizer = CountVectorizer(analyzer='word', tokenizer=word_tokenize, ngram_range=(1, 1), min_df=1)
# X matrix where the row represents sentences and column is our one-hot vector for each token in our vocabulary
X = ngram_vectorizer.fit_transform(data.split('\n'))
# Vocabulary
vocab = list(ngram_vectorizer.get_feature_names())
# Column-wise sum of the X matrix.
# It's some crazy numpy syntax that looks horribly unpythonic
# For details, see http://stackoverflow.com/questions/3337301/numpy-matrix-to-array
# and http://stackoverflow.com/questions/13567345/how-to-calculate-the-sum-of-all-columns-of-a-2d-numpy-array-efficiently
counts = X.sum(axis=0).A1
freq_distribution = Counter(dict(zip(vocab, counts)))
print (freq_distribution.most_common(10))
[OUT]:
[(',', 32000),
('.', 17783),
('de', 11225),
('a', 7197),
('que', 5710),
('la', 4732),
('je', 4304),
('se', 4013),
('на', 3978),
('na', 3834)]
基本上,你也可以这样做:
from collections import Counter
import numpy as np
from nltk import word_tokenize
from sklearn.feature_extraction.text import CountVectorizer
def freq_dist(data):
"""
:param data: A string with sentences separated by '\n'
:type data: str
"""
ngram_vectorizer = CountVectorizer(analyzer='word', tokenizer=word_tokenize, ngram_range=(1, 1), min_df=1)
X = ngram_vectorizer.fit_transform(data.split('\n'))
vocab = list(ngram_vectorizer.get_feature_names())
counts = X.sum(axis=0).A1
return Counter(dict(zip(vocab, counts)))
我们timeit
:
import time
start = time.time()
word_distribution = freq_dist(data)
print (time.time() - start)
[OUT]:
5.257147789001465
请注意,CountVectorizer
也可以使用文件而不是字符串,而此处无需将整个文件读入内存。在代码中:
import io
from collections import Counter
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
infile = '/path/to/input.txt'
ngram_vectorizer = CountVectorizer(analyzer='word', ngram_range=(1, 1), min_df=1)
with io.open(infile, 'r', encoding='utf8') as fin:
X = ngram_vectorizer.fit_transform(fin)
vocab = ngram_vectorizer.get_feature_names()
counts = X.sum(axis=0).A1
freq_distribution = Counter(dict(zip(vocab, counts)))
print (freq_distribution.most_common(10))
答案 2 :(得分:3)
这是一些基准。它看起来很奇怪,但最粗糙的代码获胜。
[代码]:
from collections import Counter, defaultdict
import io, time
import numpy as np
from sklearn.feature_extraction.text import CountVectorizer
infile = '/path/to/file'
def extract_dictionary_sklearn(file_path):
with io.open(file_path, 'r', encoding='utf8') as fin:
ngram_vectorizer = CountVectorizer(analyzer='word')
X = ngram_vectorizer.fit_transform(fin)
vocab = ngram_vectorizer.get_feature_names()
counts = X.sum(axis=0).A1
return Counter(dict(zip(vocab, counts)))
def extract_dictionary_native(file_path):
dictionary = Counter()
with io.open(file_path, 'r', encoding='utf8') as fin:
for line in fin:
dictionary.update(line.split())
return dictionary
def extract_dictionary_paddle(file_path):
dictionary = defaultdict(int)
with io.open(file_path, 'r', encoding='utf8') as fin:
for line in fin:
for words in line.split():
dictionary[word] +=1
return dictionary
start = time.time()
extract_dictionary_sklearn(infile)
print time.time() - start
start = time.time()
extract_dictionary_native(infile)
print time.time() - start
start = time.time()
extract_dictionary_paddle(infile)
print time.time() - start
[OUT]:
38.306814909
24.8241138458
12.1182529926
上述基准测试中使用的数据大小(154MB):
$ wc -c /path/to/file
161680851
$ wc -l /path/to/file
2176141
有些注意事项:
sklearn
版本,会产生矢量化器+ numpy操作和转换为Counter
对象的开销Counter
更新版本,似乎Counter.update()
是一项昂贵的操作答案 3 :(得分:2)
这应该足够了。
def countinfile(filename):
d = {}
with open(filename, "r") as fin:
for line in fin:
words = line.strip().split()
for word in words:
try:
d[word] += 1
except KeyError:
d[word] = 1
return d
答案 4 :(得分:0)
跳过CountVectorizer和scikit-learn。
文件可能太大而无法加载到内存中,但我怀疑python字典是否太大。最简单的选择可能是将大文件拆分为10-20个较小的文件,并扩展代码以循环覆盖较小的文件。
答案 5 :(得分:0)
我没有解码从url读取的整个字节,而是处理二进制数据。因为bytes.translate
期望它的第二个参数是一个字节字符串,所以我utf-8编码punctuation
。删除标点后,我utf-8解码字节串。
函数freq_dist
期望迭代。这就是我通过data.splitlines()
的原因。
from urllib2 import urlopen
from collections import Counter
from string import punctuation
from time import time
import sys
from pprint import pprint
url = 'https://raw.githubusercontent.com/Simdiva/DSL-Task/master/data/DSLCC-v2.0/test/test.txt'
data = urlopen(url).read()
def freq_dist(data):
"""
:param data: file-like object opened in binary mode or
sequence of byte strings separated by '\n'
:type data: an iterable sequence
"""
#For readability
#return Counter(word for line in data
# for word in line.translate(
# None,bytes(punctuation.encode('utf-8'))).decode('utf-8').split())
punc = punctuation.encode('utf-8')
words = (word for line in data for word in line.translate(None, punc).decode('utf-8').split())
return Counter(words)
start = time()
word_dist = freq_dist(data.splitlines())
print('elapsed: {}'.format(time() - start))
pprint(word_dist.most_common(10))
输出;
elapsed: 0.806480884552
[(u'de', 11106),
(u'a', 6742),
(u'que', 5701),
(u'la', 4319),
(u'je', 4260),
(u'se', 3938),
(u'\u043d\u0430', 3929),
(u'na', 3623),
(u'da', 3534),
(u'i', 3487)]
似乎dict
比Counter
对象效率更高。
def freq_dist(data):
"""
:param data: A string with sentences separated by '\n'
:type data: str
"""
d = {}
punc = punctuation.encode('utf-8')
words = (word for line in data for word in line.translate(None, punc).decode('utf-8').split())
for word in words:
d[word] = d.get(word, 0) + 1
return d
start = time()
word_dist = freq_dist(data.splitlines())
print('elapsed: {}'.format(time() - start))
pprint(sorted(word_dist.items(), key=lambda x: (x[1], x[0]), reverse=True)[:10])
输出;
elapsed: 0.642680168152
[(u'de', 11106),
(u'a', 6742),
(u'que', 5701),
(u'la', 4319),
(u'je', 4260),
(u'se', 3938),
(u'\u043d\u0430', 3929),
(u'na', 3623),
(u'da', 3534),
(u'i', 3487)]
要在打开大文件时提高内存效率,您必须只传递打开的URL。但时间也包括文件下载时间。
data = urlopen(url)
word_dist = freq_dist(data)
答案 6 :(得分:0)
您可以尝试使用sklearn
def save(self):
super(Group1, self).save()
if not self.urlhash:
if self.user.profile.user_type == 'Business User':
self.urlhash = 'B' + str(self.User.id) + ('00') + str(self.id)
<b>self.__class__.objects.filter.(pk=self.pk).update(urlhash=urlhash)</b>
else:
self.urlhash = 'P' + str(self.User.id) + ('00') + str(self.id)
<b>self.__class__.objects.filter.(pk=self.pk).update(urlhash=urlhash)
答案 7 :(得分:0)
结合其他人的观点和我自己的观点:) 这是我给你的东西
from collections import Counter
from nltk.tokenize import RegexpTokenizer
from nltk.corpus import stopwords
text='''Note that if you use RegexpTokenizer option, you lose
natural language features special to word_tokenize
like splitting apart contractions. You can naively
split on the regex \w+ without any need for the NLTK.
'''
# tokenize
raw = ' '.join(word_tokenize(text.lower()))
tokenizer = RegexpTokenizer(r'[A-Za-z]{2,}')
words = tokenizer.tokenize(raw)
# remove stopwords
stop_words = set(stopwords.words('english'))
words = [word for word in words if word not in stop_words]
# count word frequency, sort and return just 20
counter = Counter()
counter.update(words)
most_common = counter.most_common(20)
most_common
(所有人)
[('note', 1), ('use', 1), ('regexptokenizer', 1), ('option', 1), ('lose', 1), ('natural', 1), ('language', 1), ('features', 1), ('special', 1), ('word', 1), ('tokenize', 1), ('like', 1), ('splitting', 1), ('apart', 1), ('contractions', 1), ('naively', 1), ('split', 1), ('regex', 1), ('without', 1), ('need', 1)]
就效率而言,可以做得比这更好,但是如果您不太担心它,那么这段代码是最好的。