当我为某些数据进行批量标记时,我有一个用于记录所有计算结果的变量:
p_all = tf.Variable(tf.zeros([batch_num, batch_size]), name = "probability");
在计算中,我有一个循环来处理每个批次:
for i in range(batch_num):
feed = {x: testDS.test.next_batch(batch_size)}
sess.run(p_each_batch, feed_dict=feed)
如何将p_each_bach
的值复制到p_all
?
为了更清楚,我想要像:
... ...
p_all[batch_index,:] = p_each_batch
for i in range(batch_num):
feed = {x: testDS.test.next_batch(batch_size), batch_index: i}
sess.run(p_all, feed_dict=feed)
如何让这些代码真正起作用?
答案 0 :(得分:1)
由于p_all
是tf.Variable
,您可以使用tf.scatter_update()
操作来更新每个批次中的各个行:
# Equivalent to `p_all[batch_index, :] = p_each_batch`
update_op = tf.scatter_update(p_all,
tf.expand_dims(batch_index, 0),
tf.expand_dims(p_each_batch, 0))
for i in range(batch_num):
feed = {x: testDS.test.next_batch(batch_size), batch_index: i}
sess.run(update_op, feed_dict=feed)