我遇到了使用Spark解码Avro数据的问题。架构和编码数据是有效的 - 我能够使用avro-tools CLI实用程序解码数据。我还能够使用Hive和其他工具解码数据......除了Spark。
举一个简单的例子,我采用了Oracle文档here中的示例模式和数据:
模式
{
"type": "record",
"name": "MemberInfo",
"namespace": "avro",
"fields": [
{"name": "name", "type": {
"type": "record",
"name": "FullName",
"fields": [
{"name": "first", "type": "string"},
{"name": "last", "type": "string"}
]
}},
{"name": "age", "type": "int"},
{"name": "address", "type": {
"type": "record",
"name": "Address",
"fields": [
{"name": "street", "type": "string"},
{"name": "city", "type": "string"},
{"name": "state", "type": "string"},
{"name": "zip", "type": "int"}
]
}}
]
}
数据
{
"name": {
"first": "Percival",
"last": "Lowell"
},
"age": 156,
"address": {
"street": "Mars Hill Rd",
"city": "Flagstaff",
"state": "AZ",
"zip": 86001
}
}
创建(无分区 - 工作)
如果我创建没有分区,我可以很好地查询数据。
CREATE EXTERNAL TABLE IF NOT EXISTS foo
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
STORED AS INPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
LOCATION '/path/to/data/dir'
TBLPROPERTIES ('avro.schema.url'='/path/to/schema.avsc');
创建(分区 - 不起作用)
如果我创建没有分区,然后手动添加分区,我的所有查询都会返回错误。 (我需要手动添加分区,因为我无法控制数据目录的结构,所以动态分区不是一个选项。)
CREATE EXTERNAL TABLE IF NOT EXISTS foo
PARTITIONED BY (ds STRING)
ROW FORMAT SERDE 'org.apache.hadoop.hive.serde2.avro.AvroSerDe'
STORED AS INPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerInputFormat'
OUTPUTFORMAT 'org.apache.hadoop.hive.ql.io.avro.AvroContainerOutputFormat'
TBLPROPERTIES ('avro.schema.url'='/path/to/schema.avsc');
ALTER TABLE foo ADD PARTITION (ds='1') LOCATION '/path/to/data/dir';
错误:
spark-sql> SELECT * FROM foo WHERE ds = '1';
Driver stacktrace:
at org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418)
at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)
at scala.Option.foreach(Option.scala:236)
at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599)
at org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588)
at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
at org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1832)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1845)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1858)
at org.apache.spark.SparkContext.runJob(SparkContext.scala:1929)
at org.apache.spark.rdd.RDD$$anonfun$collect$1.apply(RDD.scala:927)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)
at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)
at org.apache.spark.rdd.RDD.collect(RDD.scala:926)
at org.apache.spark.sql.execution.SparkPlan.executeCollect(SparkPlan.scala:166)
at org.apache.spark.sql.execution.SparkPlan.executeCollectPublic(SparkPlan.scala:174)
at org.apache.spark.sql.hive.HiveContext$QueryExecution.stringResult(HiveContext.scala:635)
at org.apache.spark.sql.hive.thriftserver.SparkSQLDriver.run(SparkSQLDriver.scala:64)
at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.processCmd(SparkSQLCLIDriver.scala:308)
at org.apache.hadoop.hive.cli.CliDriver.processLine(CliDriver.java:376)
at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver$.main(SparkSQLCLIDriver.scala:226)
at org.apache.spark.sql.hive.thriftserver.SparkSQLCLIDriver.main(SparkSQLCLIDriver.scala)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:483)
at org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:731)
at org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181)
at org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206)
at org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121)
at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)
Caused by: org.apache.avro.AvroTypeException: Found avro.FullName, expecting union
at org.apache.avro.io.ResolvingDecoder.doAction(ResolvingDecoder.java:292)
at org.apache.avro.io.parsing.Parser.advance(Parser.java:88)
at org.apache.avro.io.ResolvingDecoder.readIndex(ResolvingDecoder.java:267)
at org.apache.avro.generic.GenericDatumReader.read(GenericDatumReader.java:155)
at org.apache.avro.generic.GenericDatumReader.readField(GenericDatumReader.java:193)
at org.apache.avro.generic.GenericDatumReader.readRecord(GenericDatumReader.java:183)
at org.apache.avro.generic.GenericDatumReader.read(GenericDatumReader.java:151)
at org.apache.avro.generic.GenericDatumReader.read(GenericDatumReader.java:142)
at org.apache.hadoop.hive.serde2.avro.AvroDeserializer$SchemaReEncoder.reencode(AvroDeserializer.java:111)
at org.apache.hadoop.hive.serde2.avro.AvroDeserializer.deserialize(AvroDeserializer.java:175)
at org.apache.hadoop.hive.serde2.avro.AvroSerDe.deserialize(AvroSerDe.java:201)
at org.apache.spark.sql.hive.HadoopTableReader$$anonfun$fillObject$2.apply(TableReader.scala:409)
at org.apache.spark.sql.hive.HadoopTableReader$$anonfun$fillObject$2.apply(TableReader.scala:408)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$$anon$11.next(Iterator.scala:328)
at scala.collection.Iterator$class.foreach(Iterator.scala:727)
at scala.collection.AbstractIterator.foreach(Iterator.scala:1157)
at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103)
at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47)
at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273)
at scala.collection.AbstractIterator.to(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265)
at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157)
at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252)
at scala.collection.AbstractIterator.toArray(Iterator.scala:1157)
at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:927)
at org.apache.spark.rdd.RDD$$anonfun$collect$1$$anonfun$12.apply(RDD.scala:927)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858)
at org.apache.spark.SparkContext$$anonfun$runJob$5.apply(SparkContext.scala:1858)
at org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)
at org.apache.spark.scheduler.Task.run(Task.scala:89)
at org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)
at java.lang.Thread.run(Thread.java:745)