我似乎无法写一个JavaRDD<T>
,其中T是一个说法,Person
类。我已将其定义为
public class Person implements Serializable
{
private static final long serialVersionUID = 1L;
private String name;
private String age;
private Address address;
....
Address
:
public class Address implements Serializable
{
private static final long serialVersionUID = 1L;
private String City; private String Block;
...<getters and setters>
然后我像这样创建一个JavaRDD
:
JavaRDD<Person> people = sc.textFile("/user/johndoe/spark/data/people.txt").map(new Function<String, Person>()
{
public Person call(String line)
{
String[] parts = line.split(",");
Person person = new Person();
person.setName(parts[0]);
person.setAge("2");
Address address = new Address("HomeAdd","141H");
person.setAddress(address);
return person;
}
});
注意 - 我为所有人手动设置Address
。这基本上是一个嵌套的RDD。试图将其保存为镶木地板文件:
DataFrame dfschemaPeople = sqlContext.createDataFrame(people, Person.class);
dfschemaPeople.write().parquet("/user/johndoe/spark/data/out/people.parquet");
地址类是:
import java.io.Serializable;
public class Address implements Serializable
{
public Address(String city, String block)
{
super();
City = city;
Block = block;
}
private static final long serialVersionUID = 1L;
private String City;
private String Block;
//Omitting getters and setters
}
我遇到错误:
引起:java.lang.ClassCastException: com.test.schema.Address无法强制转换为org.apache.spark.sql.Row
我正在运行spark-1.4.1。
DataFrame dfSubset = sqlContext.sql("SELECT address.city FROM PersonTable");
我仍然会收到相同的错误那是什么给出的?如何从文本文件中读取复杂的数据结构并保存为镶木地板?似乎我不能这样做。
答案 0 :(得分:3)
您正在使用具有限制的java api
来自spark文档的: http://spark.apache.org/docs/1.4.1/sql-programming-guide.html#interoperating-with-rdds
Spark SQL支持自动将JavaBeans的RDD转换为DataFrame。使用反射获得的BeanInfo定义了表的模式。目前,Spark SQL不支持包含嵌套或包含复杂类型(如Lists或Arrays)的JavaBean。您可以通过创建实现Serializable的类来创建JavaBean,并为其所有字段设置getter和setter。 使用scala案例类它将起作用(更新为写入镶木地板格式)
import org.apache.spark.SparkContext
import org.apache.spark.SparkContext._
import org.apache.spark.SparkConf
import org.apache.spark.rdd.RDD
case class Address(city:String, block:String);
case class Person(name:String,age:String, address:Address);
object Test2 {
def main(args: Array[String]): Unit = {
val conf = new SparkConf().setAppName("Simple Application").setMaster("local");
val sc = new SparkContext(conf)
val sqlContext = new org.apache.spark.sql.SQLContext(sc);
import sqlContext.implicits._
val people = sc.parallelize(List(Person("a", "b", Address("a", "b")), Person("c", "d", Address("c", "d"))));
val df = sqlContext.createDataFrame(people);
df.write.mode("overwrite").parquet("/tmp/people.parquet")
}
}