我正在使用Python 2.7和OpenCV 3.x为我的项目使用网络摄像头进行omr表评估。
在找到圆心周围的白色像素数时,我发现强度值是错误的,但是当我使用imtool('a1.png')时,它在MATLAB中显示正确的值。
我正在使用.png图片(数据类型uint8)。 只需运行代码并在图像中转到[360:370,162:172]坐标并查看强度值..它不应该是0。 在这里找到图像 - > a1.png a2.png
为什么会这样?
import numpy as np
import cv2
from matplotlib import pyplot as plt
#select radius of circle
radius = 10;
#function for finding white pixels
def thresh_circle(img,ptx,pty):
centerX = ptx;
centerY = pty;
cntOfWhite = 0;
for i in range((centerX - radius),(centerX + radius)):
for j in range((centerY - radius), (centerY + radius)):
if(j < img.shape[0] and i < img.shape[1]):
val = img[i][j]
if (val == 255):
cntOfWhite = cntOfWhite + 1;
return cntOfWhite
MIN_MATCH_COUNT = 10
img1 = cv2.imread('a1.png',0) # queryImage
img2 = cv2.imread('a2.png',0) # trainImage
sift = cv2.SIFT()# Initiate SIFT detector
kp1, des1 = sift.detectAndCompute(img1,None)# find the keypoints and descriptors with SIFT
kp2, des2 = sift.detectAndCompute(img2,None)
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks = 50)
flann = cv2.FlannBasedMatcher(index_params, search_params)
matches = flann.knnMatch(des1,des2,k=2)
good = []# store all the good matches as per Lowe's ratio test.
for m,n in matches:
if m.distance < 0.7*n.distance:
good.append(m)
if len(good)>MIN_MATCH_COUNT:
src_pts = np.float32([ kp1[m.queryIdx].pt for m in good ]).reshape(-1,1,2)
dst_pts = np.float32([ kp2[m.trainIdx].pt for m in good ]).reshape(-1,1,2)
M, mask = cv2.findHomography(src_pts, dst_pts, cv2.LMEDS,5.0)
#print M
matchesMask = mask.ravel().tolist()
h,w = img1.shape
else:
print "Not enough matches are found - %d/%d" % (len(good),MIN_MATCH_COUNT)
matchesMask = None
img3 = cv2.warpPerspective(img1, M, (img2.shape[1],img2.shape[0]))
blur = cv2.GaussianBlur(img3,(5,5),0)
ret3,th3 = cv2.threshold(blur,0,255,cv2.THRESH_BINARY+cv2.THRESH_OTSU)
ret,th2 = cv2.threshold(blur,ret3,255,cv2.THRESH_BINARY_INV)
print th2[360:370,162:172]#print a block of image
plt.imshow(th2, 'gray'),plt.show()
cv2.waitKey(0)
cv2.imwrite('th2.png',th2)
ptyc = np.array([170,200,230,260]);#y coordinates of circle center
ptxc = np.array([110,145,180,215,335,370,405,440])#x coordinates of circle center
pts_src = np.zeros(shape = (32,2),dtype=np.int);#x,y coordinates of circle center
ct = 0;
for i in range(0,4):
for j in range(0,8):
pts_src[ct][1] = ptyc[i];
pts_src[ct][0] = ptxc[j];
ct = ct+1;
boolval = np.zeros(shape=(8,4),dtype=np.bool)
ct = 0;
for j in range(0,8):
for i in range(0,4):
a1 = thresh_circle(th2,pts_src[ct][0],pts_src[ct][1])
ct = ct+1;
if(a1 > 50):
boolval[j][i] = 1
else:
boolval[j][i] = 0