通过在BigQuery中导入包含重复记录的JSON文件,您可以创建一个包含嵌套重复字段的表。
例如,对于架构:
[
{"type":"STRING", "name":"item"},
{"type":"RECORD", "name":"click", "mode":"REPEATED", "fields": [{"type":"TIMESTAMP", "name":"click_time"}, {"type":"STRING", "name":"userid"}]
}
]
您可以加载项目点击的JSON文件,并为每个项目重复点击。该表格包含字段item
,click.click_time
和click.userid
。
假设您有一个CSV文件,该文件已经展平了上述JSON项目点击次数,每次点击一行,但重复了click
和item
的值。您是否可以将其加载到GBQ中并使用GBQ查询将其转换为您在重复字段中加载JSON文件时所具有的等效表?
导入的CSV表格上的GBQ查询生成的表格应包含click.click_time
,click.userid
项作为字段。
答案 0 :(得分:3)
假设您在表格中展平了数据:
item click_time userid
a1 2016-03-03 19:52:23 UTC u1
a1 2016-03-03 19:52:23 UTC u2
a1 2016-03-03 19:52:23 UTC u3
a1 2016-03-03 19:52:23 UTC u4
a2 2016-03-03 19:52:23 UTC u1
a2 2016-03-03 19:52:23 UTC u2
以下GBQ查询执行您要求的内容:
请注意:您需要写入“允许大结果”的表格。并且' UnFlatten'选项
SELECT *
FROM JS(
( // input table
SELECT item, NEST(CONCAT(STRING(click_time), ',', STRING(userid))) AS clicks
FROM YourTable
GROUP BY item
),
item, clicks, // input columns
"[ // output schema
{'name': 'item', 'type': 'STRING'},
{'name': 'clicks', 'type': 'RECORD',
'mode': 'REPEATED',
'fields': [
{'name': 'click_time', 'type': 'STRING'},
{'name': 'userid', 'type': 'STRING'}
]
}
]",
"function(row, emit) { // function
var c = [];
for (var i = 0; i < row.clicks.length; i++) {
x = row.clicks[i].split(',');
t = {click_time:x[0],
userid:x[1]} ;
c.push(t);
};
emit({item: row.item, clicks: c});
}"
)
结果预计如下
答案 1 :(得分:3)
通过引入BigQuery Standard SQL,我们可以轻松地处理记录 请尝试以下操作,不要忘记取消选中显示选项
下的Use Legacy SQL
复选框
WITH YourTable AS (
SELECT 'a1' AS item, '2016-03-03 19:52:23 UTC' AS click_time, 'u1' AS userid UNION ALL
SELECT 'a1' AS item, '2016-03-03 19:52:23 UTC' AS click_time, 'u2' AS userid UNION ALL
SELECT 'a1' AS item, '2016-03-03 19:52:23 UTC' AS click_time, 'u3' AS userid UNION ALL
SELECT 'a1' AS item, '2016-03-03 19:52:23 UTC' AS click_time, 'u4' AS userid UNION ALL
SELECT 'a2' AS item, '2016-03-03 19:52:23 UTC' AS click_time, 'u1' AS userid UNION ALL
SELECT 'a2' AS item, '2016-03-03 19:52:23 UTC' AS click_time, 'u2' AS userid
)
SELECT item, ARRAY_AGG(STRUCT(click_time, userid)) AS clicks
FROM YourTable
GROUP BY item